Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 190(1): 745-761, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35674377

RESUMEN

Biogenesis of ribonucleoproteins occurs in dynamic subnuclear compartments called Cajal bodies (CBs). COILIN is a critical scaffolding component essential for CB formation, composition, and activity. We recently showed that Arabidopsis (Arabidopsis thaliana) AtCOILIN is phosphorylated in response to bacterial elicitor treatment. Here, we further investigated the role of AtCOILIN in plant innate immunity. Atcoilin mutants are compromised in defense responses to bacterial pathogens. Besides confirming a role of AtCOILIN in alternative splicing (AS), Atcoilin showed differential expression of genes that are distinct from those of AS, including factors involved in RNA biogenesis, metabolism, plant immunity, and phytohormones. Atcoilin mutant plants have reduced levels of defense phytohormones. As expected, the mutant plants were more sensitive to the necrotrophic fungal pathogen Botrytis cinerea. Our findings reveal an important role for AtCOILIN in innate plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Empalme Alternativo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta/genética , Proteínas de Unión al ARN/metabolismo
2.
EMBO Rep ; 22(3): e51049, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33426785

RESUMEN

Global warming has become a critical challenge to food security, causing severe yield losses of major crops worldwide. Conventional and transgenic breeding strategies to enhance plant thermotolerance are laborious and expensive. Therefore, the use of beneficial microbes could be an alternative approach. Here, we report that the root endophyte Enterobacter sp. SA187 induces thermotolerance in wheat in the laboratory as well as in open-field agriculture. To unravel the molecular mechanisms, we used Arabidopsis thaliana as model plant. SA187 reprogramed the Arabidopsis transcriptome via HSFA2-dependent enhancement of H3K4me3 levels at heat stress memory gene loci. Unlike thermopriming, SA187-induced thermotolerance is mediated by ethylene signaling via the transcription factor EIN3. In contrast to the transient chromatin modification by thermopriming, SA187 induces constitutive H3K4me3 modification of heat stress memory genes, generating robust thermotolerance in plants. Importantly, microbial community composition of wheat plants in open-field agriculture is not influenced by SA187, indicating that beneficial microbes can be a powerful tool to enhance thermotolerance of crops in a sustainable manner.


Asunto(s)
Arabidopsis/fisiología , Cromatina/genética , Endófitos/fisiología , Raíces de Plantas/microbiología , Termotolerancia , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Fitomejoramiento , Plantas Modificadas Genéticamente , Termotolerancia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA