Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Med ; 30(5): 1406-1415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745011

RESUMEN

GRN mutations cause progranulin haploinsufficiency, which eventually leads to frontotemporal dementia (FTD-GRN). PR006 is an investigational gene therapy delivering the granulin gene (GRN) using an adeno-associated virus serotype 9 (AAV9) vector. In non-clinical studies, PR006 transduced neurons derived from induced pluripotent stem cells of patients with FTD-GRN, resulted in progranulin expression and improvement of lipofuscin, lysosomal and neuroinflammation pathologies in Grn-knockout mice, and was well tolerated except for minimal, asymptomatic dorsal root ganglionopathy in non-human primates. We initiated a first-in-human phase 1/2 open-label trial. Here we report results of a pre-specified interim analysis triggered with the last treated patient of the low-dose cohort (n = 6) reaching the 12-month follow-up timepoint. We also include preliminary data from the mid-dose cohort (n = 7). Primary endpoints were safety, immunogenicity and change in progranulin levels in cerebrospinal fluid (CSF) and blood. Secondary endpoints were Clinical Dementia Rating (CDR) plus National Alzheimer's Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) rating scale and levels of neurofilament light chain (NfL). One-time administration of PR006 into the cisterna magna was generally safe and well tolerated. All patients developed treatment-emergent anti-AAV9 antibodies in the CSF, but none developed anti-progranulin antibodies. CSF pleocytosis was the most common PR006-related adverse event. Twelve serious adverse events occurred, mostly unrelated to PR006. Deep vein thrombosis developed in three patients. There was one death (unrelated) occurring 18 months after treatment. CSF progranulin increased after PR006 treatment in all patients; blood progranulin increased in most patients but only transiently. NfL levels transiently increased after PR006 treatment, likely reflecting dorsal root ganglia toxicity. Progression rates, based on the CDR scale, were within the broad ranges reported for patients with FTD. These data provide preliminary insights into the safety and bioactivity of PR006. Longer follow-up and additional studies are needed to confirm the safety and potential efficacy of PR006. ClinicalTrials.gov identifier: NCT04408625 .


Asunto(s)
Dependovirus , Demencia Frontotemporal , Terapia Genética , Progranulinas , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/terapia , Demencia Frontotemporal/líquido cefalorraquídeo , Progranulinas/genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Dependovirus/genética , Persona de Mediana Edad , Femenino , Masculino , Anciano , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/líquido cefalorraquídeo , Vectores Genéticos , Animales , Resultado del Tratamiento , Investigación Biomédica Traslacional , Ratones , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre
2.
J Parkinsons Dis ; 11(s2): S183-S188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34151863

RESUMEN

Human genetic studies as well as studies in animal models indicate that lysosomal dysfunction plays a key role in the pathogenesis of Parkinson's disease. Among the lysosomal genes involved, GBA1 has the largest impact on Parkinson's disease risk. Deficiency in the GBA1 encoded enzyme glucocerebrosidase (GCase) leads to the accumulation of the GCase glycolipid substrates glucosylceramide and glucosylsphingosine and ultimately results in toxicity and inflammation and negatively affect many clinical aspects of Parkinson's disease, including disease risk, the severity of presentation, age of onset, and likelihood of progression to dementia. These findings support the view that re-establishing normal levels of GCase enzyme activity may reduce the progression of Parkinson's disease in patients carrying GBA1 mutations. Studies in mouse models indicate that PR001, a AAV9 vector-based gene therapy designed to deliver a functional GBA1 gene to the brain, suggest that this therapeutic approach may slow or stop disease progression. PR001 is currently being evaluated in clinical trials with Parkinson's disease patients carrying GBA1 mutations.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Animales , Terapia Genética , Glucosilceramidasa/genética , Humanos , Lisosomas , Ratones , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , alfa-Sinucleína
3.
Hum Mol Genet ; 27(2): 385-395, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29177506

RESUMEN

Human genetic studies implicate LRRK2 and RAB7L1 in susceptibility to Parkinson disease (PD). These two genes function in the same pathway, as knockout of Rab7L1 results in phenotypes similar to LRRK2 knockout, and studies in cells and model organisms demonstrate LRRK2 and Rab7L1 interact in the endolysosomal system. Recently, a subset of Rab proteins have been identified as LRRK2 kinase substrates. Herein, we find that Rab8, Rab10, and Rab7L1 must be membrane and GTP-bound for LRRK2 phosphorylation. LRRK2 mutations that cause PD including R1441C, Y1699C, and G2019S all increase LRRK2 phosphorylation of Rab7L1 four-fold over wild-type LRRK2 in cells, resulting in the phosphorylation of nearly one-third the available Rab7L1 protein in cells. In contrast, the most common pathogenic LRRK2 mutation, G2019S, does not upregulate LRRK2-mediated phosphorylation of Rab8 or Rab10. LRRK2 interaction with membrane and GTP-bound Rab7L1, but not Rab8 or Rab10, results in the activation of LRRK2 autophosphorylation at the serine 1292 position, required for LRRK2 toxicity. Further, Rab7L1 controls the proportion of LRRK2 that is membrane-associated, and LRRK2 mutations enhance Rab7L1-mediated recruitment of LRRK2 to the trans-Golgi network. Interaction studies with the Rab8 and Rab10 GTPase-activating protein TBC1D4/AS160 demonstrate that LRRK2 phosphorylation may block membrane and GTP-bound Rab protein interaction with effectors. These results suggest reciprocal regulation between LRRK2 and Rab protein substrates, where Rab7L1-mediated upregulation of LRRK2 kinase activity results in the stabilization of membrane and GTP-bound Rab proteins that may be unable to interact with Rab effector proteins.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Red trans-Golgi/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Mutación , Fosforilación , Transporte de Proteínas
4.
Cell Rep ; 21(7): 1727-1736, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29141208

RESUMEN

Mutations in presenilin (PSEN) 1 and 2, which encode components of the γ-secretase (GS) complex, cause familial Alzheimer's disease (FAD). It is hypothesized that altered GS-mediated processing of the amyloid precursor protein (APP) to the Aß42 fragment, which is accumulated in diseased brain, may be pathogenic. Here, we describe an in vitro model system that enables the facile analysis of neuronal disease mechanisms in non-neuronal patient cells using CRISPR gene activation of endogenous disease-relevant genes. In FAD patient-derived fibroblast cultures, CRISPR activation of APP or BACE unmasked an occult processivity defect in downstream GS-mediated carboxypeptidase cleavage of APP, ultimately leading to higher Aß42 levels. These data suggest that, selectively in neurons, relatively high levels of BACE1 activity lead to substrate pressure on FAD-mutant GS complexes, promoting CNS Aß42 accumulation. Our results introduce an additional platform for analysis of neurological disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fibroblastos/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Fibroblastos/citología , Humanos , Neuronas/citología , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Piel/citología , Activación Transcripcional
5.
Cell Syst ; 4(4): 404-415.e5, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28330615

RESUMEN

Human age-associated traits, such as cognitive decline, can be highly variable across the population, with some individuals exhibiting traits that are not expected at a given chronological age. Here we present differential aging (Δ-aging), an unbiased method that quantifies individual variability in age-associated phenotypes within a tissue of interest, and apply this approach to the analysis of existing transcriptome-wide cerebral cortex gene expression data from several cohorts totaling 1,904 autopsied human brain samples. We subsequently performed a genome-wide association study and identified the TMEM106B and GRN gene loci, previously associated with frontotemporal dementia, as determinants of Δ-aging in the cerebral cortex with genome-wide significance. TMEM106B risk variants are associated with inflammation, neuronal loss, and cognitive deficits, even in the absence of known brain disease, and their impact is highly selective for the frontal cerebral cortex of older individuals (>65 years). The methodological framework we describe can be broadly applied to the analysis of quantitative traits associated with aging or with other parameters.


Asunto(s)
Envejecimiento/genética , Corteza Cerebral/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Progranulinas/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Envejecimiento/fisiología , Corteza Cerebral/patología , Estudios de Cohortes , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad Innata/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Fenotipo , Progranulinas/metabolismo , Progranulinas/fisiología
6.
Nature ; 539(7628): 207-216, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830778

RESUMEN

Parkinson's disease is a debilitating, age-associated movement disorder. A central aspect of the pathophysiology of Parkinson's disease is the progressive demise of midbrain dopamine neurons and their axonal projections, but the underlying causes of this loss are unclear. Advances in genetics and experimental model systems have illuminated an important role for defects in intracellular transport pathways to lysosomes. The accumulation of altered proteins and damaged mitochondria, particularly at axon terminals, ultimately might overwhelm the capacity of intracellular disposal mechanisms. Cell-extrinsic mechanisms, including inflammation and prion-like spreading, are proposed to have both protective and deleterious functions in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Animales , Transporte Biológico/genética , Endocitosis , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Modelos Biológicos , Terapia Molecular Dirigida , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Priones/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo
7.
Sci Rep ; 6: 29945, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27424887

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) has been linked to several clinical disorders including Parkinson's disease (PD), Crohn's disease, and leprosy. Furthermore in rodents, LRRK2 deficiency or inhibition leads to lysosomal pathology in kidney and lung. Here we provide evidence that LRRK2 functions together with a second PD-associated gene, RAB7L1, within an evolutionarily conserved genetic module in diverse cellular contexts. In C. elegans neurons, orthologues of LRRK2 and RAB7L1 act coordinately in an ordered genetic pathway to regulate axonal elongation. Further genetic studies implicated the AP-3 complex, which is a known regulator of axonal morphology as well as of intracellular protein trafficking to the lysosome compartment, as a physiological downstream effector of LRRK2 and RAB7L1. Additional cell-based studies implicated LRRK2 in the AP-3 complex-related intracellular trafficking of lysosomal membrane proteins. In mice, deficiency of either RAB7L1 or LRRK2 leads to prominent age-associated lysosomal defects in kidney proximal tubule cells, in the absence of frank CNS pathology. We hypothesize that defects in this evolutionarily conserved genetic pathway underlie the diverse pathologies associated with LRRK2 in humans and in animal models.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Axones/ultraestructura , Línea Celular , Endosomas/metabolismo , Endosomas/ultraestructura , Células HEK293 , Humanos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/deficiencia , Lisosomas/ultraestructura , Proteínas de la Membrana/metabolismo , Ratones , Neuronas Motoras/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética
10.
Biol Psychiatry ; 75(7): 558-64, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24629668

RESUMEN

Neurodegenerative disorders of aging represent a growing public health concern. In the United States alone, there are now >5 million patients with Alzheimer's disease (AD), the most common form of dementia. No therapeutic approaches are available that alter the relentless course of AD or other dementias of aging. A major hurdle to the development of effective therapeutics has been the lack of predictive model systems in which to develop and validate candidate therapies. Animal model studies based on the analysis of transgenic mice that overexpress rare familial AD-associated mutant genes have been informative about mechanisms of familial disease, but they have not proven predictive for drug development. New approaches to disease modeling are of particular interest. Methods such as epigenetic reprogramming of patient skin fibroblasts to human induced pluripotent stem cells, which can be differentiated into patient-derived neuron subtypes, have generated significant excitement because of their potential to model more accurately aspects of human neurodegeneration. Studies focused on the generation of human neuron models of AD and frontotemporal dementia have pointed to pathologic pathways and potential therapeutic venues. This article discusses the promise and potential pitfalls of modeling of dementia disorders based on somatic cell reprogramming.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Demencia Frontotemporal/fisiopatología , Células Madre Pluripotentes Inducidas/fisiología , Células-Madre Neurales/fisiología , Envejecimiento/fisiología , Animales , Células Cultivadas , Fibroblastos/fisiología , Humanos , Ratones
11.
Biol Psychiatry ; 75(12): 945-51, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24525100

RESUMEN

Nuclear transplantation, cell fusion, and induced pluripotent stem cell studies have revealed a surprising degree of plasticity in mature mammalian cell fates. Somatic cell reprogramming also has been achieved more recently by the directed conversion of nonneuronal somatic cells, such as skin fibroblasts, to neuronal phenotypes. This approach appears particularly applicable to the in vitro modeling of human neurologic disorders. Central nervous system neurons are otherwise difficult to obtain from patients with neurologic disorders; however, nonhuman models may not reflect patient pathology. Somatic cell reprogramming may afford models of nonfamilial "sporadic" neurologic disorders, which are likely caused by multiple interacting genetic and nongenetic factors. Directed somatic cell reprogramming, which does not pass through typical in vivo developmental stages, toward many mature neuronal phenotypes has now been described. This article reviews the field and discusses the potential utilities of such models, such as for the development of personalized medicine strategies.


Asunto(s)
Reprogramación Celular , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/patología , Modelos Neurológicos , Neuronas/patología , Reprogramación Celular/genética , Humanos , Células Madre Pluripotentes Inducidas/patología , Medicina de Precisión
12.
PLoS Genet ; 9(10): e1003845, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098148

RESUMEN

Macroautophagy is a conserved mechanism for the bulk degradation of proteins and organelles. Pathological studies have implicated defective macroautophagy in neurodegeneration, but physiological functions of macroautophagy in adult neurons remain unclear. Here we show that Atg7, an essential macroautophagy component, regulates dopaminergic axon terminal morphology. Mature Atg7-deficient midbrain dopamine (DA) neurons harbored selectively enlarged axonal terminals. This contrasted with the phenotype of DA neurons deficient in Pten - a key negative regulator of the mTOR kinase signaling pathway and neuron size - that displayed enlarged soma but unaltered axon terminals. Surprisingly, concomitant deficiency of both Atg7 and Pten led to a dramatic enhancement of axon terminal enlargement relative to Atg7 deletion alone. Similar genetic interactions between Atg7 and Pten were observed in the context of DA turnover and DA-dependent locomotor behaviors. These data suggest a model for morphological regulation of mature dopaminergic axon terminals whereby the impact of mTOR pathway is suppressed by macroautophagy.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Fosfohidrolasa PTEN/genética , Terminales Presinápticos/metabolismo , Serina-Treonina Quinasas TOR/genética , Animales , Autofagia/genética , Proteína 7 Relacionada con la Autofagia , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/metabolismo , Morfogénesis/genética , Actividad Motora/genética , Actividad Motora/fisiología , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
13.
Nature ; 500(7460): 45-50, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23883936

RESUMEN

Late-onset Alzheimer's disease (LOAD) risk is strongly influenced by genetic factors such as the presence of the apolipoprotein E ε4 allele (referred to here as APOE4), as well as non-genetic determinants including ageing. To pursue mechanisms by which these affect human brain physiology and modify LOAD risk, we initially analysed whole-transcriptome cerebral cortex gene expression data in unaffected APOE4 carriers and LOAD patients. APOE4 carrier status was associated with a consistent transcriptomic shift that broadly resembled the LOAD profile. Differential co-expression correlation network analysis of the APOE4 and LOAD transcriptomic changes identified a set of candidate core regulatory mediators. Several of these--including APBA2, FYN, RNF219 and SV2A--encode known or novel modulators of LOAD associated amyloid beta A4 precursor protein (APP) endocytosis and metabolism. Furthermore, a genetic variant within RNF219 was found to affect amyloid deposition in human brain and LOAD age-of-onset. These data implicate an APOE4 associated molecular pathway that promotes LOAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Genoma Humano/genética , Genómica , Edad de Inicio , Anciano , Alelos , Enfermedad de Alzheimer/epidemiología , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Endocitosis , Epistasis Genética , Femenino , Fibroblastos , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Heterocigoto , Humanos , Levetiracetam , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenotipo , Piracetam/análogos & derivados , Piracetam/farmacología , Polimorfismo Genético/genética , Proteolisis/efectos de los fármacos , Transcriptoma/genética
14.
Neuron ; 78(6): 957-69, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23791192

RESUMEN

Epigenetic reprogramming of adult human somatic cells to alternative fates, such as the conversion of human skin fibroblasts to induced pluripotency stem cells (iPSC), has enabled the generation of novel cellular models of CNS disorders. Cell reprogramming models appear particularly promising in the context of human neurological disorders of aging such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), for which animal models may not recapitulate key aspects of disease pathology. In addition, recent developments in reprogramming technology have allowed for more selective cell fate interconversion events, as from skin fibroblasts directly to diverse induced neuron (iN) subtypes. Challenges to human reprogramming-based cell models of disease are the heterogeneity of the human population and the extended temporal course of these disorders. A major goal is the accurate modeling of common nonfamilial "sporadic" forms of brain disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Células-Madre Neurales/fisiología , Enfermedades Neurodegenerativas/patología , Adulto , Animales , Modelos Animales de Enfermedad , Fibroblastos/patología , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología
15.
Neuron ; 77(3): 425-39, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23395371

RESUMEN

Recent genome-wide association studies have linked common variants in the human genome to Parkinson's disease (PD) risk. Here we show that the consequences of variants at 2 such loci, PARK16 and LRRK2, are highly interrelated, both in terms of their broad impacts on human brain transcriptomes of unaffected carriers, and in terms of their associations with PD risk. Deficiency of the PARK16 locus gene RAB7L1 in primary rodent neurons, or of a RAB7L1 ortholog in Drosophila dopamine neurons, recapitulated degeneration observed with expression of a familial PD mutant form of LRRK2, whereas RAB7L1 overexpression rescued the LRRK2 mutant phenotypes. PD-associated defects in RAB7L1 or LRRK2 led to endolysosomal and Golgi apparatus sorting defects and deficiency of the VPS35 component of the retromer complex. Expression of wild-type VPS35, but not a familial PD-associated mutant form, rescued these defects. Taken together, these studies implicate retromer and lysosomal pathway alterations in PD risk.


Asunto(s)
Corteza Cerebral/patología , Neuronas/metabolismo , Enfermedad de Parkinson , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Drosophila , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoprecipitación , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Ratones , Persona de Mediana Edad , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Estadística como Asunto , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Transfección , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tirosina 3-Monooxigenasa , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7
16.
Mol Neurodegener ; 7: 48, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22998728

RESUMEN

BACKGROUND: Macroautophagy is an evolutionarily conserved mechanism for bulk intracellular degradation of proteins and organelles. Pathological studies have implicated macroautophagy defects in human neurodegenerative disorders of aging including Alzheimer's disease and tauopathies. Neuronal deficiency of macroautophagy throughout mouse embryonic development results in neurodevelopmental defects and early postnatal mortality. However, the role of macroautophagy in mature CNS neurons, and the relationship with human disease neuropathology, remains unclear. Here we describe mice deficient in an essential macroautophagy component, Atg7, specifically within postnatal CNS neurons. RESULTS: Postnatal forebrain-specific Atg7 conditional knockout (cKO) mice displayed age-dependent neurodegeneration and ubiquitin- and p62-positive inclusions. Phosphorylated tau was significantly accumulated in Atg7 cKO brains, but neurofibrillary tangles that typify end-stage human tauopathy were not apparent. A major tau kinase, glycogen synthase kinase 3ß (GSK3ß), was also accumulated in Atg7 cKO brains. Chronic pharmacological inhibition of tau phosphorylation, or genetic deletion of tau, significantly rescued Atg7-deficiency-mediated neurodegeneration, but did not suppress inclusion formation. CONCLUSIONS: These data elucidate a role for macroautophagy in the long-term survival and physiological function of adult CNS neurons. Neurodegeneration in the context of macroautophagy deficiency is mediated through a phospho-tau pathway.


Asunto(s)
Autofagia/genética , Proteínas Asociadas a Microtúbulos/genética , Degeneración Nerviosa/genética , Neuronas/metabolismo , Transducción de Señal , Envejecimiento , Animales , Proteína 7 Relacionada con la Autofagia , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Fosforilación , Prosencéfalo/metabolismo , Prosencéfalo/patología , Proteínas tau/metabolismo
17.
Nat Commun ; 3: 1084, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23011138

RESUMEN

α-Synuclein is implicated both in physiological functions at neuronal synaptic terminals as well as in pathological processes in the context of Parkinson's disease. However, the molecular mechanisms for these apparently diverse roles are unclear. Here we show that specific RNA transcript isoforms of α-synuclein with an extended 3' untranslated region, termed aSynL, appear selectively linked to pathological processes, relative to shorter α-synuclein transcripts. Common variants in the aSynL 3' untranslated region associated with Parkinson's disease risk promote the accumulation and translation of aSynL transcripts. The presence of intracellular dopamine can further enhance the relative abundance of aSynL transcripts through alternative polyadenylation site selection. We demonstrate that the presence of the extended aSynL transcript 3' untranslated region impacts accumulation of α-synuclein protein, which appears redirected away from synaptic terminals and towards mitochondria, reminiscent of Parkinson's disease pathology. Taken together, these findings identify a novel mechanism for aSyn regulation in the context of Parkinson's disease-associated genetic and environmental variations.


Asunto(s)
Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Regiones no Traducidas 3'/genética , Animales , Northern Blotting , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Dopamina/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Nature ; 488(7413): 652-5, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22902501

RESUMEN

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by using the pluripotency factors Oct4, Sox2, Klf4 and c-Myc (together referred to as OSKM). iPSC reprogramming erases somatic epigenetic signatures­as typified by DNA methylation or histone modification at silent pluripotency loci­and establishes alternative epigenetic marks of embryonic stem cells (ESCs). Here we describe an early and essential stage of somatic cell reprogramming, preceding the induction of transcription at endogenous pluripotency loci such as Nanog and Esrrb. By day 4 after transduction with OSKM, two epigenetic modification factors necessary for iPSC generation, namely poly(ADP-ribose) polymerase-1 (Parp1) and ten-eleven translocation-2 (Tet2), are recruited to the Nanog and Esrrb loci. These epigenetic modification factors seem to have complementary roles in the establishment of early epigenetic marks during somatic cell reprogramming: Parp1 functions in the regulation of 5-methylcytosine (5mC) modification, whereas Tet2 is essential for the early generation of 5-hydroxymethylcytosine (5hmC) by the oxidation of 5mC (refs 3,4). Although 5hmC has been proposed to serve primarily as an intermediate in 5mC demethylation to cytosine in certain contexts, our data, and also studies of Tet2-mutant human tumour cells, argue in favour of a role for 5hmC as an epigenetic mark distinct from 5mC. Consistent with this, Parp1 and Tet2 are each needed for the early establishment of histone modifications that typify an activated chromatin state at pluripotency loci, whereas Parp1 induction further promotes accessibility to the Oct4 reprogramming factor. These findings suggest that Parp1 and Tet2 contribute to an epigenetic program that directs subsequent transcriptional induction at pluripotency loci during somatic cell reprogramming.


Asunto(s)
Reprogramación Celular , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Dioxigenasas , Exones/genética , Fibroblastos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Intrones/genética , Factor 4 Similar a Kruppel , Ratones , Proteína Homeótica Nanog , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo
19.
Cell ; 146(3): 359-71, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816272

RESUMEN

Directed conversion of mature human cells, as from fibroblasts to neurons, is of potential clinical utility for neurological disease modeling as well as cell therapeutics. Here, we describe the efficient generation of human-induced neuronal (hiN) cells from adult skin fibroblasts of unaffected individuals and Alzheimer's patients, using virally transduced transcription regulators and extrinsic support factors. hiN cells from unaffected individuals display morphological, electrophysiological, and gene expression profiles that typify glutamatergic forebrain neurons and are competent to integrate functionally into the rodent CNS. hiN cells from familial Alzheimer disease (FAD) patients with presenilin-1 or -2 mutations exhibit altered processing and localization of amyloid precursor protein (APP) and increased production of Aß, relative to the source patient fibroblasts or hiN cells from unaffected individuals. Together, our findings demonstrate directed conversion of human fibroblasts to a neuronal phenotype and reveal cell type-selective pathology in hiN cells derived from FAD patients.


Asunto(s)
Enfermedad de Alzheimer/patología , Transdiferenciación Celular , Medicina Regenerativa/métodos , Piel/citología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Células Cultivadas , Fibroblastos/citología , Humanos , Neuronas/metabolismo , Presenilina-1/metabolismo , Presenilina-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA