Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(22): 6059-6078, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293658

RESUMEN

Transmembrane P1B-type ATPase pumps catalyze the extrusion of transition metal ions across cellular lipid membranes to maintain essential cellular metal homeostasis and detoxify toxic metals. Zn(ii)-pumps of the P1B-2-type subclass, in addition to Zn2+, select diverse metals (Pb2+, Cd2+ and Hg2+) at their transmembrane binding site and feature promiscuous metal-dependent ATP hydrolysis in the presence of these metals. Yet, a comprehensive understanding of the transport of these metals, their relative translocation rates, and transport mechanism remain elusive. We developed a platform for the characterization of primary-active Zn(ii)-pumps in proteoliposomes to study metal selectivity, translocation events and transport mechanism in real-time, employing a "multi-probe" approach with fluorescent sensors responsive to diverse stimuli (metals, pH and membrane potential). Together with atomic-resolution investigation of cargo selection by X-ray absorption spectroscopy (XAS), we demonstrate that Zn(ii)-pumps are electrogenic uniporters that preserve the transport mechanism with 1st-, 2nd- and 3rd-row transition metal substrates. Promiscuous coordination plasticity, guarantees diverse, yet defined, cargo selectivity coupled to their translocation.

2.
Nat Commun ; 13(1): 5121, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045128

RESUMEN

Copper is essential for living cells, yet toxic at elevated concentrations. Class 1B P-type (P1B-) ATPases are present in all kingdoms of life, facilitating cellular export of transition metals including copper. P-type ATPases follow an alternating access mechanism, with inward-facing E1 and outward-facing E2 conformations. Nevertheless, no structural information on E1 states is available for P1B-ATPases, hampering mechanistic understanding. Here, we present structures that reach 2.7 Å resolution of a copper-specific P1B-ATPase in an E1 conformation, with complementing data and analyses. Our efforts reveal a domain arrangement that generates space for interaction with ion donating chaperones, and suggest a direct Cu+ transfer to the transmembrane core. A methionine serves a key role by assisting the release of the chaperone-bound ion and forming a cargo entry site together with the cysteines of the CPC signature motif. Collectively, the findings provide insights into P1B-mediated transport, likely applicable also to human P1B-members.


Asunto(s)
ATPasas Transportadoras de Cobre , Cobre , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Transporte Biológico , Cobre/química , Cobre/metabolismo , ATPasas Transportadoras de Cobre/química , ATPasas Transportadoras de Cobre/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
3.
Nat Commun ; 12(1): 2202, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850135

RESUMEN

Artificial native-like lipid bilayer systems constructed from phospholipids assembling into unilamellar liposomes allow the reconstitution of detergent-solubilized transmembrane proteins into supramolecular lipid-protein assemblies called proteoliposomes, which mimic cellular membranes. Stabilization of these complexes remains challenging because of their chemical composition, the hydrophobicity and structural instability of membrane proteins, and the lability of interactions between protein, detergent, and lipids within micelles and lipid bilayers. In this work we demonstrate that metastable lipid, protein-detergent, and protein-lipid supramolecular complexes can be successfully generated and immobilized within zeolitic-imidazole framework (ZIF) to enhance their stability against chemical and physical stressors. Upon immobilization in ZIF bio-composites, blank liposomes, and model transmembrane metal transporters in detergent micelles or embedded in proteoliposomes resist elevated temperatures, exposure to chemical denaturants, aging, and mechanical stresses. Extensive morphological and functional characterization of the assemblies upon exfoliation reveal that all these complexes encapsulated within the framework maintain their native morphology, structure, and activity, which is otherwise lost rapidly without immobilization.


Asunto(s)
Detergentes/química , Dispositivo Exoesqueleto , Inmovilización/métodos , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Membrana Celular , ATPasas Transportadoras de Cobre , Proteínas de Escherichia coli , Cinética , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Micelas , Fosfolípidos , Proteolípidos , Dispersión de Radiación , Liposomas Unilamelares , Difracción de Rayos X
4.
Dalton Trans ; 49(45): 16082-16094, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32469032

RESUMEN

Cu(i) P-type ATPases are transmembrane primary active ion pumps that catalyze the extrusion of copper ions across cellular membranes. Their activity is critical in controlling copper levels in all kingdoms of life. Biochemical and structural characterization established the structural framework by which Cu-pumps perform their function. However, the details of the overall mechanism of transport (uniporter vs. cotransporter) and electrogenicity still remain elusive. In this work, we developed a platform to reconstitute the model Cu(i)-pump from E. coli (EcCopA) in artificial lipid bilayer small unilamellar vesicles (SUVs) to quantitatively characterize the metal substrate, putative counter-ions and charge translocation. By encapsulating in the liposome lumen fluorescence detector probes (CTAP-3, pyranine and oxonol VI) responsive to diverse stimuli (Cu(i), pH and membrane potential), we correlated substrate, secondary-ion translocation and charge movement events in EcCopA proteoliposomes. This platform centered on multiple fluorescence reporters allowed study of the mechanism and translocation kinetic parameters in real-time for wild-type EcCopA and inactive mutants. The maximal initial Cu(i) transport rate of 165 nmol Cu(i) mg-1 min-1 and KM, Cu(I) = 0.15 ± 0.07 µM was determined with this analysis. We reveal that Cu(i) pumps are primary-active uniporters and electrogenic. The Cu(i) translocation cycle does not require proton counter-transport resulting in electrogenic generation of transmembrane potential upon translocation of one Cu(i) per ATP hydrolysis cycle. Thus, mechanistic differences between Cu(i) pumps and other better characterized P-type ATPases are discussed. The platform opens the venue to study translocation events and mechanisms of transport in other transition metal P-type ATPase pumps.


Asunto(s)
Membrana Celular/enzimología , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Transporte de Electrón , Escherichia coli/citología , Escherichia coli/enzimología , Liposomas Unilamelares/metabolismo
5.
Biochemistry ; 58(43): 4337-4342, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31589416

RESUMEN

In intravacuolar pathogens, iron is essential for growth and virulence. In Legionella pneumophila, a putative transmembrane protein inserted on the surface of the host pathogen-containing vacuole, IroT/MavN, facilitates intravacuolar iron acquisition from the host by an unknown mechanism, bypassing the problem of Fe(III) insolubility and mobilization. We developed a platform for purification and reconstitution of IroT in artificial lipid bilayer vesicles (proteoliposomes). By encapsulating the fluorescent reporter probe Fluozin-3, we reveal, by real-time metal transport assays, that IroT is a high-affinity iron transporter selective for Fe(II) over other essential transition metals. Mutational analysis reveals important residues in the transmembrane helices, soluble domains, and loops important for substrate recognition and translocation. The work establishes the substrate transport properties in a novel transporter family important for iron acquisition at the host-pathogen intravacuolar interface and provides chemical tools for a comparative investigation of the translocation properties in other iron transporter families.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Legionella pneumophila/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Colorantes Fluorescentes , Glucolípidos/química , Transporte Iónico , Cinética , Mutación , Compuestos Policíclicos , Unión Proteica , Liposomas Unilamelares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...