Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 113(5): 836-846, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36734935

RESUMEN

Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. ciceri is a devastating disease of chickpea (Cicer arietinum). To identify promising resistant genotypes and genomic loci for FW resistance, a core set of 179 genotypes of chickpea was tested for FW reactions at the seedling and reproductive stages under field conditions and controlled conditions in the greenhouse. Our results revealed that at the seedling stage, most of the genotypes were resistant, whereas at the reproductive stage, most of the genotypes were susceptible. Genotyping using a 50K Axiom® CicerSNP Array and trait data of FW together led to the identification of 26 significant (P ≤ E-05) marker-trait associations (MTAs) for FW resistance. Among the 26 MTAs, 12 were identified using trait data recorded in the field (three at the seedling and nine at the reproductive stage), and 14 were identified using trait data recorded under controlled conditions in the greenhouse (six at the seedling and eight at the reproductive stage). The phenotypic variation explained by these MTAs varied from 11.75 to 15.86%, with an average of 13.77%. Five MTAs were classified as major, explaining more than 15% of the phenotypic variation for FW, and two were declared stable, being identified in two environments. One of the promising stable and major MTAs (Affx_123280060) detected in field conditions at the reproductive stage was also detected in greenhouse conditions at the seedling and reproductive stages. The stable and major (>15% PVE) MTAs can be used in chickpea breeding programs.


Asunto(s)
Cicer , Fusarium , Cicer/genética , Fusarium/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Fenotipo
2.
Mol Biol Rep ; 49(6): 5729-5749, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34427889

RESUMEN

In order to meet the growing human food and nutrition demand a perpetual process of crop improvement is idealized. It has seen changing trends and varying concepts throughout human history; from simple selection to complex gene-editing. Among these techniques, random mutagenesis has been shown to be a promising technology to achieve desirable genetic gain with less time and minimal efforts. Over the decade, several hundred varieties have been released through random mutagenesis, but the production is falling behind the demand. Several food crops like banana, potato, cassava, sweet potato, apple, citrus, and others are vegetatively propagated. Since such crops are not propagated through seed, genetic improvement through classical breeding is impractical for them. Besides, in the case of polyploids, accomplishment of allelic homozygosity requires a considerable land area, extensive fieldwork with huge manpower, and hefty funding for an extended period of time. Apart from induction, mapping of induced genes to facilitate the knowledge of biological processes has been performed only in a few selected facultative vegetative crops like banana and cassava which can form a segregating population. During the last few decades, there has been a shift in the techniques used for crop improvement. With the introduction of the robust technologies like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) more and more crops are being subjected to gene editing. However, more work needs to be done in case of vegetatively propagated crops.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta/genética , Mutagénesis/genética , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...