Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004612

RESUMEN

Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.

2.
Mater Sci Eng C Mater Biol Appl ; 93: 1-11, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30274030

RESUMEN

The main goal of this study was to produce a novel porous scaffold for rapid in vivo bone healing behavior. Lyophilization technique was used to produce this highly porous hybrid scaffold from Na-alginate (S) and hydroxyethylcellulose (HEC) impregnated with different concentration of hydroxyapatite (HA). After cross-linking the scaffolds, their incubation was carried out in simulated body fluid (SBF) for 4 weeks at 37 °C to investigate their bioactivity. A number of techniques were employed (e.g., XRD, FTIR, SEM, EDX, and texture analyzer) to characterize the designed scaffolds. It was observed that the mechanical properties of the scaffolds increase deformation energy (182 ±â€¯16 J/m3) and rigidity gradient (19.44 ±â€¯0.85 Pa) after loading with HA. Furthermore, the scaffolds were implanted in femur critical size defects (2 mm) of adult male Wistar rats for 6 weeks. In vitro and in vivo analyses demonstrated impressive bioactivity and biocompatibility for the prepared scaffolds, especially those containing HA. Based on the obtained results we conclude that the designed scaffolds are promising solutions for bone regeneration applications.


Asunto(s)
Alginatos , Celulosa/análogos & derivados , Durapatita , Ensayo de Materiales , Andamios del Tejido/química , Alginatos/química , Alginatos/farmacología , Animales , Celulosa/química , Celulosa/farmacología , Durapatita/química , Durapatita/farmacología , Masculino , Ratas , Ratas Wistar
3.
Int J Biol Macromol ; 112: 448-460, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29408578

RESUMEN

Sodium alginate (SA)/hydroxyethylcellulose (HEC)/hydroxyapatite (HA) composite scaffolds were explored for enhanced in vitro bone regeneration. The SA/HEC/HA composites were synthesized using the lyophilization technique and further cross-linked in the presence of calcium ions to form composite hydrogel networks. The physicochemical, thermal behavior and morphology properties of the prepared scaffolds were characterized through XRD, DSC/TGA, FTIR and SEM. Furthermore, the mechanical behavior of the under investigated scaffolds was determined using texture analyzer. The in vitro bioactivity in SBF and adsorption of bovine serum albumin as well as cell viability for all the prepared scaffolds were also tested. The results indicated that the higher HA concentration (40wt%) enhanced the mechanical properties (23.9MPa), bioactivity and protein adsorption. Cell viability of the tested scaffolds confirmed the non-toxicity of the fabricated systems on the human mesenchymal stem cells (hMSCs). Proliferation capability was also confirmed for the tested scaffolds after 3 and 7days, but the higher HA-containing scaffold showed increased cell populations specially after 7days compared to HA-free scaffolds. This novel composite material could be used in bone tissue engineering as a scaffold material to deliver cells and biologically active molecules.


Asunto(s)
Alginatos/farmacología , Regeneración Ósea/efectos de los fármacos , Celulosa/análogos & derivados , Durapatita/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Alginatos/química , Animales , Bovinos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Durapatita/química , Ácido Glucurónico/química , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Humanos , Albúmina Sérica Bovina/química , Resistencia a la Tracción/efectos de los fármacos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA