Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Vaccine Immunol ; 24(4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28179404

RESUMEN

Malaria is caused by parasites of the genus Plasmodium, which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum, it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP142) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP142 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Vivax/prevención & control , Proteínas de la Membrana/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Proteínas Protozoarias/inmunología , Vacunas de ADN/inmunología , Anemia/prevención & control , Animales , Anticuerpos Antiprotozoarios/sangre , Aotidae , Modelos Animales de Enfermedad , Femenino , Vacunas contra la Malaria/administración & dosificación , Malaria Vivax/inmunología , Masculino , Parasitemia/prevención & control , Resultado del Tratamiento , Vacunas de ADN/administración & dosificación
2.
Malar J ; 15(1): 377, 2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27448805

RESUMEN

BACKGROUND: In this phase 1 clinical trial, healthy adult, malaria-naïve subjects were immunized with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) by mosquito bite and then underwent controlled human malaria infection (CHMI). The PfRAS model for immunization against malaria had previously induced >90 % sterile protection against homologous CHMI. This study was to further explore the safety, tolerability and protective efficacy of the PfRAS model and to provide biological specimens to characterize protective immune responses and identify protective antigens in support of malaria vaccine development. METHODS: Fifty-seven subjects were screened, 41 enrolled and 30 received at least one immunization. The true-immunized subjects received PfRAS via mosquito bite and the mock-immunized subjects received mosquito bites from irradiated uninfected mosquitoes. Sera and peripheral blood mononuclear cells (PBMCs) were collected before and after PfRAS immunizations. RESULTS: Immunization with PfRAS was generally safe and well tolerated, and repeated immunization via mosquito bite did not appear to increase the risk or severity of AEs. Local adverse events (AEs) of true-immunized and mock-immunized groups consisted of erythaema, papules, swelling, and induration and were consistent with reactions from mosquito bites seen in nature. Two subjects, one true- and one mock-immunized, developed large local reactions that completely resolved, were likely a result of mosquito salivary antigens, and were withdrawn from further participation as a safety precaution. Systemic AEs were generally rare and mild, consisting of headache, myalgia, nausea, and low-grade fevers. Two true-immunized subjects experienced fever, malaise, myalgia, nausea, and rigours approximately 16 h after immunization. These symptoms likely resulted from pre-formed antibodies interacting with mosquito salivary antigens. Ten subjects immunized with PfRAS underwent CHMI and five subjects (50 %) were sterilely protected and there was a significant delay to parasitaemia in the other five subjects. All ten subjects developed humoral immune responses to whole sporozoites and to the circumsporozoite protein prior to CHMI, although the differences between protected and non-protected subjects were not statistically significant for this small sample size. CONCLUSIONS: The protective efficacy of this clinical trial (50 %) was notably less than previously reported (>90 %). This may be related to differences in host genetics or the inherent variability in mosquito biting behavior and numbers of sporozoites injected. Differences in trial procedures, such as the use of leukapheresis prior to CHMI and of a longer interval between the final immunization and CHMI in these subjects compared to earlier trials, may also have reduced protective efficacy. This trial has been retrospectively registered at ISRCTN ID 17372582, May 31, 2016.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Culicidae/fisiología , Mordeduras y Picaduras de Insectos , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Adolescente , Adulto , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Humanos , Vacunas contra la Malaria/administración & dosificación , Masculino , Persona de Mediana Edad , Plasmodium falciparum/efectos de la radiación , Esporozoítos/inmunología , Esporozoítos/efectos de la radiación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Adulto Joven
3.
Hum Vaccin Immunother ; 8(11): 1564-84, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23151451

RESUMEN

When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997-1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000-2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 µg of each plasmid plus escalating doses (0, 20, 100 or 500 µg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.


Asunto(s)
Antígenos de Protozoos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/uso terapéutico , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Esporozoítos/inmunología , Vacunas de ADN/inmunología , Vacunas de ADN/uso terapéutico , Adulto , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Vacunas contra la Malaria/administración & dosificación , Masculino , Persona de Mediana Edad , Plásmidos/genética , Vacunas de ADN/efectos adversos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...