Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 349, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965547

RESUMEN

T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.


Asunto(s)
Basigina , COVID-19 , Linfopenia , SARS-CoV-2 , Humanos , Linfopenia/inmunología , Linfopenia/virología , COVID-19/inmunología , COVID-19/virología , COVID-19/patología , SARS-CoV-2/metabolismo , Basigina/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Síndrome de Liberación de Citoquinas/inmunología , Animales
2.
NPJ Syst Biol Appl ; 10(1): 52, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760476

RESUMEN

Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.


Asunto(s)
Biomarcadores de Tumor , Biología Computacional , Redes Reguladoras de Genes , MicroARNs , Neuroblastoma , Neuroblastoma/genética , Humanos , MicroARNs/genética , Biomarcadores de Tumor/genética , Redes Reguladoras de Genes/genética , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/genética , Factores de Transcripción/genética , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , Multiómica
3.
Adv Exp Med Biol ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036871

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related morbidity and mortality worldwide. Current therapeutic approaches suffer significant side effects and lack of clear understanding of their molecular targets. Recent studies reported the anticancer effects, immunomodulatory properties, and antiangiogenic effects of the human amniotic membrane (hAM). hAM is a transparent protective membrane that surrounds the fetus. Preclinical studies showed pro-apoptotic and antiproliferative properties of hAM treatment on cancer cells. Herein, we present the latest findings of the application of the hAM in combating HCC tumorigenesis and the underlying molecular pathogenies and the role of transforming growth factor-beta (TGFß), P53, WNT/beta-catenin, and PI3K/AKT pathways. The emerging clinical applications of hAM in cancer therapy provide evidence for its diverse and unique features and suitability for the management of a wide range of pathological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA