Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 901, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500437

RESUMEN

Adding impurities or defects destroys crystalline order. Occasionally, however, extraordinary behaviour emerges that cannot be explained by perturbing the ordered state. One example is the Kondo effect, where magnetic impurities in metals drastically alter the temperature dependence of resistivity. In Type-II superconductors, disorder generally works to pin vortices, giving zero resistivity below a critical current jc. However, peaks have been observed in the temperature and field dependences of jc. This peak effect is difficult to explain in terms of an ordered Abrikosov vortex lattice. Here we test the widespread paradigm that an order-disorder transition of the vortex ensemble drives the peak effect. Using neutron scattering to probe the vortex order in superconducting vanadium, we uncover an order-disorder transition from a quasi-long-range-ordered phase to a vortex glass. The peak effect, however, is found to lie at higher fields and temperatures, in a region where thermal fluctuations of individual vortices become significant.

2.
Nat Mater ; 7(10): 811-5, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18758454

RESUMEN

Engineering of materials with specific physical properties has recently focused on the effect of nano-sized 'guest domains' in a 'host matrix' that enable tuning of electrical, mechanical, photo-optical or thermal properties. A low thermal conductivity is a prerequisite for obtaining effective thermoelectric materials, and the challenge is to limit the conduction of heat by phonons, without simultaneously reducing the charge transport. This is named the 'phonon glass-electron crystal' concept and may be realized in host-guest systems. The guest entities are believed to have independent oscillations, so-called rattler modes, which scatter the acoustic phonons and reduce the thermal conductivity. We have investigated the phonon dispersion relation in the phonon glass-electron crystal material Ba(8)Ga(16)Ge(30) using neutron triple-axis spectroscopy. The results disclose unambiguously the theoretically predicted avoided crossing of the rattler modes and the acoustic-phonon branches. The observed phonon lifetimes are longer than expected, and a new explanation for the low kappa(L) is provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA