Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Top Dev Biol ; 140: 341-389, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32591080

RESUMEN

Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.


Asunto(s)
Tipificación del Cuerpo/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Pez Cebra/genética , Cigoto/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Cinesinas/genética , Cinesinas/metabolismo , Herencia Materna/genética , Oocitos/citología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Cigoto/citología
2.
PLoS Genet ; 16(4): e1008652, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32267837

RESUMEN

Forward genetic screens remain at the forefront of biology as an unbiased approach for discovering and elucidating gene function at the organismal and molecular level. Past mutagenesis screens targeting maternal-effect genes identified a broad spectrum of phenotypes ranging from defects in oocyte development to embryonic patterning. However, earlier vertebrate screens did not reach saturation, anticipated classes of phenotypes were not uncovered, and technological limitations made it difficult to pinpoint the causal gene. In this study, we performed a chemically-induced maternal-effect mutagenesis screen in zebrafish and identified eight distinct mutants specifically affecting the cleavage stage of development and one cleavage stage mutant that is also male sterile. The cleavage-stage phenotypes fell into three separate classes: developmental arrest proximal to the mid blastula transition (MBT), irregular cleavage, and cytokinesis mutants. We mapped each mutation to narrow genetic intervals and determined the molecular basis for two of the developmental arrest mutants, and a mutation causing male sterility and a maternal-effect mutant phenotype. One developmental arrest mutant gene encodes a maternal specific Stem Loop Binding Protein, which is required to maintain maternal histone levels. The other developmental arrest mutant encodes a maternal-specific subunit of the Minichromosome Maintenance Protein Complex, which is essential for maintaining normal chromosome integrity in the early blastomeres. Finally, we identify a hypomorphic allele of Polo-like kinase-1 (Plk-1), which results in a male sterile and maternal-effect phenotype. Collectively, these mutants expand our molecular-genetic understanding of the maternal regulation of early embryonic development in vertebrates.


Asunto(s)
División Celular/genética , Desarrollo Embrionario/genética , Herencia Materna/genética , Mutación , Pez Cebra/embriología , Pez Cebra/genética , Alelos , Animales , Blástula/citología , Blástula/embriología , Blástula/metabolismo , Tipificación del Cuerpo/genética , Núcleo Celular , Citocinesis/genética , Femenino , Infertilidad Masculina/genética , Masculino , Mutagénesis , Fenotipo , Proteínas de Pez Cebra/genética
3.
Br J Haematol ; 180(3): 412-419, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29270984

RESUMEN

Haemostasis is a defence mechanism that has evolved to protect organisms from losing their circulating fluid. We have previously introduced zebrafish as a model to study the genetics of haemostasis to identify novel genes that play a role in haemostasis. Here, we identify a zebrafish mutant that showed prolonged time to occlusion (TTO) in the laser injury venous thrombosis assay. By linkage analysis and fine mapping, we found a mutation in the orphan G protein-coupled receptor 34 like gene (gpr34l) causing a change of Val to Glu in the third external loop of Gpr34l. We have shown that injection of zebrafish gpr34l RNA rescues the prolonged TTO defect. The thrombocytes from the mutant showed elevated levels of cAMP that supports the defective thrombocyte function. We also have demonstrated that knockdown of this gene by intravenous Vivo-Morpholino injections yielded a phenotype similar to the gpr34l mutation. These results suggest that the lack of functional Gpr34l leads to increased cAMP levels that result in defective thrombocyte aggregation.


Asunto(s)
Plaquetas/metabolismo , Mutación , Receptores Lisofosfolípidos/genética , Animales , Cruzamiento , Análisis Mutacional de ADN , Expresión Génica , Fenotipo , Pez Cebra
4.
Development ; 143(6): 1016-28, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26893345

RESUMEN

The vertebrate embryonic dorsoventral axis is established and patterned by Wnt and bone morphogenetic protein (BMP) signaling pathways, respectively. Whereas Wnt signaling establishes the dorsal side of the embryo and induces the dorsal organizer, a BMP signaling gradient patterns tissues along the dorsoventral axis. Early Wnt signaling is provided maternally, whereas BMP ligand expression in the zebrafish is zygotic, but regulated by maternal factors. Concomitant with BMP activity patterning dorsoventral axial tissues, the embryo also undergoes dramatic morphogenetic processes, including the cell movements of gastrulation, epiboly and dorsal convergence. Although the zygotic regulation of these cell migration processes is increasingly understood, far less is known of the maternal regulators of these processes. Similarly, the maternal regulation of dorsoventral patterning, and in particular the maternal control of ventral tissue specification, is poorly understood. We identified split top, a recessive maternal-effect zebrafish mutant that disrupts embryonic patterning upstream of endogenous BMP signaling. Embryos from split top mutant females exhibit a dorsalized embryonic axis, which can be rescued by BMP misexpression or by derepressing endogenous BMP signaling. In addition to dorsoventral patterning defects, split top mutants display morphogenesis defects that are both BMP dependent and independent. These morphogenesis defects include incomplete dorsal convergence, delayed epiboly progression and an early lysis phenotype during gastrula stages. The latter two morphogenesis defects are associated with disruption of the actin and microtubule cytoskeleton within the yolk cell and defects in the outer enveloping cell layer, which are both known mediators of epiboly movements. Through chromosomal mapping and RNA sequencing analysis, we identified the lysosomal endopeptidase cathepsin Ba (ctsba) as the gene deficient in split top embryos. Our results identify a novel role for Ctsba in morphogenesis and expand our understanding of the maternal regulation of dorsoventral patterning.


Asunto(s)
Tipificación del Cuerpo , Catepsina B/metabolismo , Morfogénesis , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Biomarcadores/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/metabolismo , Femenino , Microtúbulos/metabolismo , Mutación/genética , Fenotipo , Análisis de Secuencia de ARN , Transducción de Señal
5.
PLoS One ; 8(10): e77618, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204897

RESUMEN

Core components of the secretory pathway have largely been identified and studied in single cell systems such as the budding yeast S. cerevisiae or in mammalian tissue culture. These studies provide details on the molecular functions of the secretory machinery; they fail, however, to provide insight into the role of these proteins in the context of specialized organs of higher eukaryotes. Here, we identify and characterize the first loss-of-function mutations in a KDEL receptor gene from higher eukaryotes. Transcripts from the Drosophila KDEL receptor gene KdelR - formerly known as dmErd2 - are provided maternally and, at later stages, are at elevated levels in several embryonic cell types, including the salivary gland secretory cells, the fat body and the epidermis. We show that, unlike Saccharomyces cerevisiae Erd2 mutants, which are viable, KdelR mutations are early larval lethal, with homozygous mutant animals dying as first instar larvae. KdelR mutants have larval cuticle defects similar to those observed with loss-of-function mutations in other core secretory pathway genes and with mutations in CrebA, which encodes a bZip transcription factor that coordinately upregulates secretory pathway component genes in specialized secretory cell types. Using the salivary gland, we demonstrate a requirement for KdelR in maintaining the ER pool of a subset of soluble resident ER proteins. These studies underscore the utility of the Drosophila salivary gland as a unique system for studying the molecular machinery of the secretory pathway in vivo in a complex eukaryote.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Epidermis/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Glándulas Salivales/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Drosophila/embriología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epidermis/embriología , Genes de Insecto/genética , Mutación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glándulas Salivales/embriología , Vías Secretoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
PLoS Genet ; 9(10): e1003822, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204286

RESUMEN

Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of ß-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/biosíntesis , ARN Helicasas DEAD-box/genética , Desarrollo Embrionario , Proteínas Wnt/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Movimiento Celular/genética , Proteínas del Citoesqueleto/genética , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Wnt/genética , Vía de Señalización Wnt/genética , Pez Cebra/genética , beta Catenina/genética
7.
Cell ; 150(3): 521-32, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863006

RESUMEN

To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres.


Asunto(s)
Embrión no Mamífero/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Blastómeros/metabolismo , Ciclo Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/citología , Femenino , Humanos , Insectos/citología , Insectos/embriología , Insectos/metabolismo , Masculino , Mamíferos/embriología , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Huso Acromático/metabolismo , Pez Cebra/metabolismo , Cigoto/citología , Cigoto/metabolismo
8.
Dev Biol ; 365(2): 434-44, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22465374

RESUMEN

We identified three zebrafish mutants with defects in biliary development. One of these mutants, pekin (pn), also demonstrated generalized hypopigmentation and other defects, including disruption of retinal cell layers, lack of zymogen granules in the pancreas, and dilated Golgi in intestinal epithelial cells. Bile duct cells in pn demonstrated an accumulation of electron dense bodies. We determined that the causative defect in pn was a splice site mutation in the atp6ap2 gene that leads to an inframe stop codon. atp6ap2 encodes a subunit of the vacuolar H(+)-ATPase (V-H(+)-ATPase), which modulates pH in intracellular compartments. The Atp6ap2 subunit has also been shown to function as an intracellular renin receptor that stimulates fibrogenesis. Here we show that mutants and morphants involving other V-H(+)-ATPase subunits also demonstrated developmental biliary defects, but did not demonstrate the inhibition of fibrogenic genes observed in pn. The defects in pn are reminiscent of those we and others have observed in class C VPS (vacuolar protein sorting) family mutants and morphants, and we report here that knockdown of atp6ap2 and vps33b had an additive negative effect on biliary development. Our findings suggest that pathways which are important in modulating intracompartmental pH lead to defects in digestive organ development, and support previous studies demonstrating the importance of intracellular sorting pathways in biliary development.


Asunto(s)
Sistema Biliar/anomalías , Proteínas de la Membrana/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/anomalías , Animales , Sistema Biliar/enzimología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/genética , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Curr Opin Genet Dev ; 19(4): 396-403, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19608405

RESUMEN

The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, owing to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development.


Asunto(s)
Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica , Genes , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Polaridad Celular/genética , Embrión no Mamífero/citología , Femenino , Predicción , Mutación , Oocitos/citología , Oocitos/metabolismo , Pez Cebra/genética
10.
Development ; 133(18): 3517-27, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16914497

RESUMEN

(Fkh) is required to block salivary gland apoptosis, internalize salivary gland precursors, prevent expression of duct genes in secretory cells and maintain expression of CrebA, which is required for elevated secretory function. Here, we characterize two new Fkh-dependent genes: PH4alphaSG1 and PH4alphaSG2. We show through in vitro DNA-binding studies and in vivo expression assays that Fkh cooperates with the salivary gland-specific bHLH protein Sage to directly regulate expression of PH4alphaSG2, as well as sage itself, and to indirectly regulate expression of PH4alphaSG1. PH4alphaSG1 and PH4alphaSG2 encode alpha-subunits of resident ER enzymes that hydroxylate prolines in collagen and other secreted proteins. We demonstrate that salivary gland secretions are altered in embryos missing function of PH4alphaSG1 and PH4alphaSG2; secretory content is reduced and shows increased electron density by TEM. Interestingly, the altered secretory content results in regions of tube dilation and constriction, with intermittent tube closure. The regulation studies and phenotypic characterization of PH4alphaSG1 and PH4alphaSG2 link Fkh, which initiates tube formation, to the maintenance of an open and uniformly sized secretory tube.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Nucleares/fisiología , Glándulas Salivales/metabolismo , Proteínas y Péptidos Salivales/fisiología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ensayo de Cambio de Movilidad Electroforética , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , Microscopía Electrónica de Transmisión , Morfogénesis/genética , Morfogénesis/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Glándulas Salivales/ultraestructura , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Development ; 132(12): 2743-58, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15901661

RESUMEN

Understanding how organs acquire the capacity to perform their respective functions is important for both cell and developmental biology. Here, we have examined the role of early-expressed transcription factors in activating genes crucial for secretory function in the Drosophila salivary gland. We show that expression of genes encoding proteins required for ER targeting and translocation, and proteins that mediate transport between the ER and Golgi is very high in the early salivary gland. This high level expression requires two early salivary gland transcription factors; CrebA is required throughout embryogenesis and Fkh is required only during late embryonic stages. As Fkh is required to maintain late CrebA expression in the salivary gland, Fkh probably works through CrebA to affect secretory pathway gene expression. In support of these regulatory interactions, we show that CrebA is important for elevated secretion in the salivary gland. Additionally, CrebA is required for the expression of the secretory pathway genes in the embryonic epidermis, where CrebA had previously been shown to be essential for cuticle development. We show that zygotic mutations in several individual secretory pathway genes result in larval cuticle phenotypes nearly identical to those of CrebA mutants. Thus, CrebA activity is linked to secretory function in multiple tissues.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Epidermis/metabolismo , Glándulas Salivales/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Proteína de Unión al Elemento de Respuesta al AMP Cíclico , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Retículo Endoplásmico/metabolismo , Epidermis/embriología , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas de Microfilamentos , Mutación/genética , Proteínas Nucleares , Transporte de Proteínas , Factores de Transcripción/genética , Transcripción Genética/genética , Regulación hacia Arriba/genética
12.
Trends Cell Biol ; 13(5): 247-54, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12742168

RESUMEN

Tubes are required in metazoans to transport the liquids and gases that sustain life. The conservation of molecules and mechanisms involved in tube formation suggests that what we learn by studying simple systems will apply to related processes in higher animals. Studies over the past 10 years have revealed the molecules that specify cell fate in Drosophila salivary gland and the cellular events that mediate tube morphogenesis. Here, we discuss how anterior-posterior and dorsal-ventral patterning information specifies both the position of salivary-gland primordia and how many cells they contain. We examine the transformation of a polarized epithelial sheet into an elongated, unbranched tube, and the intrinsic and extrinsic factors that influence the final position of the salivary gland.


Asunto(s)
Drosophila/fisiología , Glándulas Salivales/embriología , Glándulas Salivales/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Tipificación del Cuerpo , Linaje de la Célula , Movimiento Celular , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Epitelio/embriología , Epitelio/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/fisiología , Integrinas/metabolismo , Proteínas de Microfilamentos , Modelos Biológicos , Mutación , Proteínas Represoras/fisiología , Transducción de Señal , Factores de Tiempo
13.
Mech Dev ; 112(1-2): 165-71, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11850189

RESUMEN

The extracellular matrix (ECM) is proposed to play critical roles in organ morphogenesis through the stabilization and/or sequestration of signaling factors and adhesion molecules, and by maintaining organ integrity. As a first step toward understanding molecules involved in ECM modification and maturation, we have examined the embryonic expression profiles of ten prolyl 4-hydroxylase alpha subunit (PH4alpha)-related genes. Prolyl 4-hydroxylases (PH4) catalyze the formation of 4-hydroxyproline in collagens, the major components of the ECM, and are implicated in the hydroxylation of proline in several other secreted proteins. To date, two alpha subunit proteins have been described in both humans (PHalphaI and PHalphaII) and worms (PHY-1/DPY-18 and PHY-2), whereas only a single Drosophila alpha subunit has been identified. The ten PH4alpha-related genes described in this study are clustered in a 183-kb region near the tip of chromosome arm 3R and include the previously described Drosophila alpha subunit gene. Six of the ten PH4alpha genes in the cluster have tissue-specific embryonic expression. PH4alphaSG1 and PH4alphaSG2 are expressed in the salivary gland, PH4alphaMP is expressed in mouth-part precursors, PH4alphaPV is expressed in the proventriculus, and CG9698-E is expressed in the epidermis. PH4alphaEFB is expressed more broadly, with expression in the anterior and posterior midgut primordia, the fat body, the hemocytes and the epidermis. The expression profiles of these PH4alpha-related genes suggest that tissue-specific ECM modifications may be critical to organ formation and/or function.


Asunto(s)
Drosophila melanogaster/enzimología , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Secuencia de Aminoácidos , Animales , Northern Blotting , ADN Complementario/metabolismo , Drosophila , Drosophila melanogaster/genética , Epidermis/embriología , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Hibridación in Situ , Mesodermo/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Procolágeno-Prolina Dioxigenasa/química , ARN Mensajero/metabolismo , Glándulas Salivales/embriología , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA