Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274365

RESUMEN

Severe deficiency of ADAMTS13 (<10 iu/dL) is diagnostic of thrombotic thrombocytopenic purpura (TTP) and leads to accumulation of ultra-large vWF multimers, platelet aggregation, and widespread microthrombi, which can be life-threatening. However, the clinical implications of a low ADAMTS13 activity level are not only important in an acute episode of TTP. In this article, we discuss the effects of low ADAMTS13 activity in congenital and immune-mediated TTP patients not only at presentation but once in a clinical remission. Evidence is emerging of the clinical effects of low ADAMTS13 activity in other disease areas outside of TTP, and here, we explore the wider impact of low ADAMTS13 activity on the vascular endothelium and the potential for recombinant ADAMTS13 therapy in other thrombotic disease states.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39038563

RESUMEN

BACKGROUND: By causing inflammation and tissue damage, neutrophil extracellular traps (NETs) constitute an underlying mechanism of aspiration-induced lung injury, a major factor of the low utilization of donor lungs in lung transplantation (LTx). METHODS: To determine whether NET removal during ex vivo lung perfusion (EVLP) can restore lung function and morphology in aspiration-damaged lungs, gastric aspiration lung injury was induced in 12 pigs. After confirmation of acute respiratory distress syndrome, the lungs were explanted and assigned to NET removal connected to EVLP (treated) (n = 6) or EVLP only (nontreated) (n = 6). Hemodynamic measurements were taken, and blood and tissue samples were collected to assess lung function, morphology, levels of cell-free DNA, extracellular histones, and nucleosomes as markers of NETs, as well as cytokine levels. RESULTS: After EVLP and NET removal in porcine lungs, PaO2/FiO2 ratios increased significantly compared to those undergoing EVLP alone (p = 0.0411). Treated lungs had lower cell-free DNA (p = 0.0260) and lower levels of extracellular histones in EVLP perfusate (p= 0.0260) than nontreated lungs. According to histopathology, treated lungs showed less immune cell infiltration and less edema compared with nontreated lungs, which was reflected in decreased levels of proinflammatory cytokines in EVLP perfusate and bronchoalveolar lavage fluid. CONCLUSIONS: To conclude, removing NETs during EVLP improved lung function and morphology in aspiration-damaged donor lungs. The ability to remove NETs during EVLP could represent a new therapeutic approach for LTx and potentially expand the donor pool for transplantation.

3.
J Thromb Haemost ; 22(8): 2247-2260, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777257

RESUMEN

BACKGROUND: Circulating histones are released by extensive tissue injury or cell death and play important pathogenic roles in critical illnesses. Their interaction with circulating plasma components and the potential roles in the clinical setting are not fully understood. OBJECTIVES: We aimed to characterize the interaction of histones with fibrinogen and explore its roles in vitro, in vivo, and in patient samples. METHODS: Histone-fibrinogen binding was assessed by electrophoresis and enzyme-linked immunosorbent assay-based affinity assay. Functional significance was explored using washed platelets and endothelial cells in vitro and histone-infusion mouse models in vivo. To determine clinical translatability, a retrospective single-center cohort study was conducted on patients requiring intensive care admission (n = 199) and validated in a cohort of hospitalized patients with COVID-19 (n = 69). RESULTS: Fibrinogen binds histones through its D-domain with high affinity (calf thymus histones, KD = 18.0 ± 5.6 nM; histone 3, KD = 2.7 ± 0.8 nM; and histone 4, KD = 2.0 ± 0.7 nM) and significantly reduces histone-induced endothelial damage and platelet aggregation in vitro and in vivo in a histone-infusion mouse model. Physiologic concentrations of fibrinogen can neutralize low levels of circulating histones and increase the cytotoxicity threshold of histones to 50 µg/mL. In a cohort of patients requiring intensive care, a histone:fibrinogen ratio of ≥6 on admission was associated with moderate-severe thrombocytopenia and independently predicted mortality. This finding was validated in a cohort of hospitalized patients with COVID-19. CONCLUSION: Fibrinogen buffers the cytotoxic properties of circulating histones. Detection and monitoring of circulating histones and histone:fibrinogen ratios will help identify critically ill patients at highest risk of adverse outcomes who might benefit from antihistone therapy.


Asunto(s)
COVID-19 , Fibrinógeno , Histonas , Unión Proteica , Humanos , Fibrinógeno/metabolismo , Histonas/sangre , Histonas/metabolismo , COVID-19/sangre , Animales , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Ratones , Agregación Plaquetaria/efectos de los fármacos , Plaquetas/metabolismo , SARS-CoV-2 , Células Endoteliales/metabolismo , Adulto
4.
Blood Adv ; 8(10): 2499-2508, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38507683

RESUMEN

ABSTRACT: Microclots have been associated with various conditions, including postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. They have been postulated to be amyloid-fibrin(ogen) aggregates, but their role as a prognostic biomarker remains unclear. To examine their possible clinical utility, blood samples were collected for the first 96 hours from critically ill patients (n = 104) admitted to the intensive care unit (ICU). Detection was by staining platelet-poor plasma samples with thioflavin T and visualized by fluorescent microscopy. Image J software was trained to identify and quantify microclots, which were detected in 44 patients (42.3%) on ICU admission but not in the remaining 60 (57.7%) or the 20 healthy controls (0.0%). Microclots on admission to ICU were associated with a primary diagnosis of sepsis (microclots present in sepsis, 23/44 [52.3%] vs microclots absent in sepsis, 19/60 [31.7%]; P = .044). Multicolor immunofluorescence demonstrated that microclots consisted of amyloid-fibrinogen aggregates, which was supported by proteomic analysis. Patients with either a high number or larger-sized microclots had a higher likelihood of developing disseminated intravascular coagulation (odds ratio [OR], 51.4; 95% confidence interval [CI], 6.3-6721.1; P < .001) and had an increased probability of 28-day mortality (OR, 5.3; 95% CI, 2.0-15.6; P < .001). This study concludes that microclots, as defined by amyloid-fibrin(ogen) aggregates, are potentially useful in identifying sepsis and predicting adverse coagulopathic and clinical outcomes.


Asunto(s)
Amiloide , COVID-19 , Coagulación Intravascular Diseminada , Fibrinógeno , Humanos , Coagulación Intravascular Diseminada/sangre , Coagulación Intravascular Diseminada/mortalidad , Coagulación Intravascular Diseminada/etiología , Coagulación Intravascular Diseminada/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Amiloide/metabolismo , Fibrinógeno/análisis , Fibrinógeno/metabolismo , COVID-19/sangre , COVID-19/mortalidad , COVID-19/complicaciones , Sepsis/mortalidad , Sepsis/sangre , Pronóstico , SARS-CoV-2/aislamiento & purificación , Biomarcadores , Agregado de Proteínas , Enfermedad Crítica
5.
J Thromb Haemost ; 22(4): 1145-1153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38103733

RESUMEN

BACKGROUND: Adenoviral vector-based COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) is rare but carries significant risks of mortality and long-term morbidity. The underlying pathophysiology of severe disease is still not fully understood. The objectives were to explore the pathophysiological profile and examine for clinically informative biomarkers in patients with severe VITT. METHODS: Twenty-two hospitalized patients with VITT, 9 pre- and 21 post-ChAdOx1 vaccine controls, were recruited across England, United Kingdom. Admission blood samples were analyzed for cytokine profiles, cell death markers (lactate dehydrogenase and circulating histones), neutrophil extracellular traps, and coagulation parameters. Tissue specimens from deceased patients were analyzed. RESULTS: There were strong immune responses characterized by significant elevations in proinflammatory cytokines and T helper 1 and 2 cell activation in patients with VITT. Markers of systemic endothelial activation and coagulation activation in both circulation and organ sections were also significantly elevated. About 70% (n = 15/22) of patients met the International Society for Thrombosis and Haemostasis criteria for disseminated intravascular coagulation despite negligible changes in the prothrombin time. The increased neutrophil extracellular trap formation, in conjunction with marked lymphopenia, elevated lactate dehydrogenase, and circulating histone levels, indicates systemic immune cell injury or death. Both lymphopenia and circulating histone levels independently predicted 28-day mortality in patients with VITT. CONCLUSION: The coupling of systemic cell damage and death with strong immune-inflammatory and coagulant responses are pathophysiologically dominant and clinically relevant in severe VITT.


Asunto(s)
Linfopenia , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Trombosis , Vacunas , Humanos , Histonas , Vacunas contra la COVID-19/efectos adversos , Lactato Deshidrogenasas
6.
J Thromb Haemost ; 21(7): 1724-1736, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37116754

RESUMEN

The cell-based model of coagulation remains the basis of our current understanding of clinical hemostasis and thrombosis. Its advancement on the coagulation cascade model has enabled new prohemostatic and anticoagulant treatments to be developed. In the past decade, there has been increasing evidence of the procoagulant properties of extracellular, cell-free histones (CFHs). Although high levels of circulating CFHs released following extensive cell death in acute critical illnesses, such as sepsis and trauma, have been associated with adverse coagulation outcomes, including disseminated intravascular coagulation, new information has also emerged on how its local effects contribute to physiological clot formation. CFHs initiate coagulation by tissue factor exposure, either by destruction of the endovascular barrier or induction of endoluminal tissue factor expression on endothelia and monocytes. CFHs can also bind prothrombin directly, generating thrombin via the alternative prothrombinase pathway. In amplifying and augmenting the procoagulant signal, CFHs activate and aggregate platelets, increase procoagulant material bioavailability through platelet degranulation and Weibel-Palade body exocytosis, activate intrinsic coagulation via platelet polyphosphate release, and induce phosphatidylserine exposure. CFHs also inhibit protein C activation and downregulate thrombomodulin expression to reduce anti-inflammatory and anticoagulant effects. In consolidating clot formation, CFHs augment the fibrin polymer to confer fibrinolytic resistance and integrate neutrophil extracellular traps into the clot structure. Such new information holds the promise of new therapeutic developments, including improved targeting of immunothrombotic pathologies in acute critical illnesses.


Asunto(s)
Histonas , Trombosis , Humanos , Histonas/metabolismo , Tromboplastina/metabolismo , Enfermedad Crítica , Coagulación Sanguínea/fisiología , Trombosis/metabolismo , Anticoagulantes
7.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834636

RESUMEN

Reduction in cardiac contractility is common in severe sepsis. However, the pathological mechanism is still not fully understood. Recently it has been found that circulating histones released after extensive immune cell death play important roles in multiple organ injury and disfunction, particularly in cardiomyocyte injury and contractility reduction. How extracellular histones cause cardiac contractility depression is still not fully clear. In this work, using cultured cardiomyocytes and a histone infusion mouse model, we demonstrate that clinically relevant histone concentrations cause significant increases in intracellular calcium concentrations with subsequent activation and enriched localization of calcium-dependent protein kinase C (PKC) α and ßII into the myofilament fraction of cardiomyocytes in vitro and in vivo. Furthermore, histones induced dose-dependent phosphorylation of cardiac troponin I (cTnI) at the PKC-regulated phosphorylation residues (S43 and T144) in cultured cardiomyocytes, which was also confirmed in murine cardiomyocytes following intravenous histone injection. Specific inhibitors against PKCα and PKCßII revealed that histone-induced cTnI phosphorylation was mainly mediated by PKCα activation, but not PKCßII. Blocking PKCα also significantly abrogated histone-induced deterioration in peak shortening, duration and the velocity of shortening, and re-lengthening of cardiomyocyte contractility. These in vitro and in vivo findings collectively indicate a potential mechanism of histone-induced cardiomyocyte dysfunction driven by PKCα activation with subsequent enhanced phosphorylation of cTnI. These findings also indicate a potential mechanism of clinical cardiac dysfunction in sepsis and other critical illnesses with high levels of circulating histones, which holds the potential translational benefit to these patients by targeting circulating histones and downstream pathways.


Asunto(s)
Proteína Quinasa C-alfa , Sepsis , Ratones , Animales , Proteína Quinasa C-alfa/metabolismo , Histonas/metabolismo , Fosforilación , Depresión , Miocitos Cardíacos/metabolismo , Troponina I/metabolismo , Sepsis/metabolismo , Calcio/metabolismo , Contracción Miocárdica
8.
Biomedicines ; 10(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552012

RESUMEN

BACKGROUND: Multiple organ injury and dysfunction often occurs in acute critical illness and adversely affects survival. However, in patients who survive, organ function usually recovers without permanent damage. It is, therefore, likely that there are reversible mechanisms, but this is poorly understood in the pathogenesis of multiple organ dysfunction syndrome (MODS). AIMS: Based on our knowledge of extracellular histones and pneumolysin, as endogenous and exogenous pore-forming toxins, respectively, here we clarify if the extent of cell membrane disruption and recovery is important in MODS. METHODS: This is a combination of retrospective clinical studies of a cohort of 98 patients from an intensive care unit (ICU) in a tertiary hospital, with interventional animal models and laboratory investigation. RESULTS: In patients without septic shock and/or disseminate intravascular coagulation (DIC), circulating histones also strongly correlated with sequential organ failure assessment (SOFA) scores, suggesting their pore-forming property might play an important role. In vivo, histones or pneumolysin infusion similarly caused significant elevation of cell damage markers and multiple organ injury. In trauma and sepsis models, circulating histones strongly correlated with these markers, and anti-histone reagents significantly reduced their release. Comparison of pneumolysin deletion and its parental strain-induced sepsis mouse model showed that pneumolysin was not essential for sepsis development, but enhanced multiple organ damage and reduced survival time. In vitro, histones and pneumolysin treatment disrupt cell membrane integrity, resulting in changes in whole-cell currents and elevated intracellular Ca2+ to lead to Ca2+ overload. Cell-specific damage markers, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and cardiac troponin I (cTnI), were released from damaged cells. Once toxins were removed, cell membrane damage could be rapidly repaired and cellular function recovered. CONCLUSION: This work has confirmed the importance of pore-forming toxins in the development of MODS and proposed a potential mechanism to explain the reversibility of MODS. This may form the foundation for the development of effective therapies.

9.
Br J Anaesth ; 128(2): 283-293, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34893315

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) facilitate bacterial clearance but also promote thrombosis and organ injury in sepsis. We quantified ex vivo NET induction in septic humans and murine models of sepsis to identify signalling pathways that may be modulated to improve outcome in human sepsis. METHODS: NET formation in human donor neutrophils was quantified after incubation with plasma obtained from patients with sepsis or systemic inflammation (double-blinded assessment of extracellular DNA using immunofluorescence microscopy). NET formation (% neutrophils forming NETs) was correlated with plasma cytokine levels (MultiPlex assay). Experimental sepsis (caecal ligation and puncture or intraperitoneal injection of Escherichia coli) was assessed in C57/BL6 male mice. The effect of pharmacological inhibition of CXCR1/2 signalling (reparixin) on NET formation, organ injury (hepatic, renal, and cardiac biomarkers), and survival in septic mice was examined. RESULTS: NET formation was higher after incubation with plasma from septic patients (median NETs=25% [10.5-46.5%]), compared with plasma obtained from patients with systemic inflammation (14% [4.0-23.3%]; P=0.02). Similar results were observed after incubation of plasma from mice with neutrophils from septic non-septic mice. Circulating CXCR1/2 ligands correlated with NETosis in patients (interleukin-8; r=0.643) and mice (macrophage inflammatory protein-2; r=0.902). In experimental sepsis, NETs were primarily observed in the lungs, correlating with fibrin deposition (r=0.702) and lung injury (r=0.692). Inhibition of CXCR1/2 using reparixin in septic mice reduced NET formation, multi-organ injury, and mortality, without impairing bacterial clearance. CONCLUSION: CXCR1/2 signalling-induced NET formation is a therapeutic target in sepsis, which may be guided by ex vivo NET assays.


Asunto(s)
Trampas Extracelulares/metabolismo , Inflamación/complicaciones , Sepsis/complicaciones , Sulfonamidas/farmacología , Trombosis/prevención & control , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Receptores de Interleucina-8A/antagonistas & inhibidores , Receptores de Interleucina-8B/antagonistas & inhibidores , Estudios Retrospectivos , Sepsis/tratamiento farmacológico , Sepsis/mortalidad , Trombosis/etiología
10.
Br J Haematol ; 194(3): 518-529, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34114204

RESUMEN

The COVID-19 pandemic has been the most significant health crisis in recent global history. Early studies from Wuhan highlighted COVID-19-associated coagulopathy and a significant association with mortality was soon recognised. As research continues across the world, more evidence is emerging of the cross-talk between the innate immune system, coagulation activation and inflammation. Immunothrombosis has been demonstrated to play a key role in the pathophysiology of severe COVID-19, with extracellular histones and neutrophil extracellular traps detected in the plasma and cardiopulmonary tissues of critically ill patients. Targeting the components of immunothrombosis is becoming an important factor in the treatment of patients with COVID-19 infection. Recent studies report outcomes of intermediate and therapeutic anticoagulation in hospitalised patients with varying severities of COVID-19 disease, including optimal dosing and associated bleeding risks. Immunomodulatory therapies, including corticosteroids and IL-6 receptor antagonists, have been demonstrated to significantly reduce mortality in COVID-19 patients. As the pandemic continues, more studies are required to understand the driving factors and upstream mechanisms for coagulopathy and immunothrombosis in COVID-19, and thus potentially develop more targeted therapies for SARS-CoV-2 infection, both in the acute phase and in those who develop longer-term symptom burden.


Asunto(s)
COVID-19/complicaciones , Trombosis/etiología , Animales , Coagulación Sanguínea , COVID-19/sangre , COVID-19/inmunología , COVID-19/terapia , Manejo de la Enfermedad , Humanos , Muerte Celular Inmunogénica , Inflamación/sangre , Inflamación/etiología , Inflamación/inmunología , Inflamación/terapia , SARS-CoV-2/inmunología , Trombosis/sangre , Trombosis/inmunología , Trombosis/terapia
12.
Blood ; 137(1): 103-114, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33410894

RESUMEN

Thrombin generation is pivotal to both physiological blood clot formation and pathological development of disseminated intravascular coagulation (DIC). In critical illness, extensive cell damage can release histones into the circulation, which can increase thrombin generation and cause DIC, but the molecular mechanism is not clear. Typically, thrombin is generated by the prothrombinase complex, comprising activated factor X (FXa), activated cofactor V (FVa), and phospholipids to cleave prothrombin in the presence of calcium. In this study, we found that in the presence of extracellular histones, an alternative prothrombinase could form without FVa and phospholipids. Histones directly bind to prothrombin fragment 1 (F1) and fragment 2 (F2) specifically to facilitate FXa cleavage of prothrombin to release active thrombin, unlike FVa, which requires phospholipid surfaces to anchor the classical prothrombinase complex. In vivo, histone infusion into mice induced DIC, which was significantly abrogated when prothrombin F1 + F2 were infused prior to histones, to act as decoy. In a cohort of intensive care unit patients with sepsis (n = 144), circulating histone levels were significantly elevated in patients with DIC. These data suggest that histone-induced alternative prothrombinase without phospholipid anchorage may disseminate intravascular coagulation and reveal a new molecular mechanism of thrombin generation and DIC development. In addition, histones significantly reduced the requirement for FXa in the coagulation cascade to enable clot formation in factor VIII (FVIII)- and FIX-deficient plasma, as well as in FVIII-deficient mice. In summary, this study highlights a novel mechanism in coagulation with therapeutic potential in both targeting systemic coagulation activation and correcting coagulation factor deficiency.


Asunto(s)
Coagulación Intravascular Diseminada/metabolismo , Factor V/metabolismo , Factor X/metabolismo , Factor Xa/metabolismo , Histonas/metabolismo , Animales , Coagulación Sanguínea , Humanos , Ratones , Ratones Endogámicos C57BL , Tromboplastina/metabolismo
13.
Mediators Inflamm ; 2020: 7418342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32934605

RESUMEN

The pathological roles of bacterial DNA have been documented many decades ago. Bacterial DNAs are different from mammalian DNAs; the latter are heavily methylated. Mammalian cells have sensors such as TLR-9 to sense the DNAs with nonmethylated CpGs and distinguish them from host DNAs with methylated CpGs. Further investigation has identified many other types of DNA sensors distributed in a variety of cellular compartments. These sensors not only sense foreign DNAs, including bacterial and viral DNAs, but also sense damaged DNAs from the host cells. The major downstream signalling pathways includeTLR-9-MyD88-IKKa-IRF-7/NF-κB pathways to increase IFN/proinflammatory cytokine production, STING-TBK1-IRF3 pathway to increase IFN-beta, and AIM2-ASC-caspas-1 pathway to release IL-1beta. The major outcome is to activate host immune response by inducing cytokine production. In this review, we focus on the roles and potential mechanisms of DNA sensors and downstream pathways in sepsis. Although bacterial DNAs play important roles in sepsis development, bacterial DNAs alone are unable to cause severe disease nor lead to death. Priming animals with bacterial DNAs facilitate other pathological factors, such as LPS and other virulent factors, to induce severe disease and lethality. We also discuss compartmental distribution of DNA sensors and pathological significance as well as the transport of extracellular DNAs into cells. Understanding the roles of DNA sensors and signal pathways will pave the way for novel therapeutic strategies in many diseases, particularly in sepsis.


Asunto(s)
ADN Bacteriano/metabolismo , FN-kappa B/metabolismo , Sepsis/metabolismo , Animales , Humanos , Transducción de Señal/fisiología
14.
Front Immunol ; 11: 1918, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983116

RESUMEN

Sepsis was first described by the ancient Greek physicians over 2000 years ago. The pathophysiology of the disease, however, is still not fully understood and hence the mortality rate is still unacceptably high due to lack of specific therapies. In the last decade, great progress has been made by shifting the focus of research from systemic inflammatory response syndrome (SIRS) to multiple organ dysfunction syndrome (MODS). Sepsis has been re-defined as infection-induced MODS in 2016. How infection leads to MODS is not clear, but what mediates MODS becomes the major topic in understanding the molecular mechanisms and developing specific therapies. Recently, the mechanism of infection-induced extensive immune cell death which releases a large quantity of damage-associated molecular patterns (DAMPs) and their roles in the development of MODS as well as immunosuppression during sepsis have attracted much attention. Growing evidence supports the hypothesis that DAMPs, including high-mobility group box 1 protein (HMGB1), cell-free DNA (cfDNA) and histones as well as neutrophil extracellular traps (NETs), may directly or indirectly contribute significantly to the development of MODS. Here, we provide an overview of the mechanisms and consequences of infection-induced extensive immune cell death during the development of sepsis. We also propose a pivotal pathway from a local infection to eventual sepsis and a potential combined therapeutic strategy for targeting sepsis.


Asunto(s)
Apoptosis , Sistema Inmunológico/inmunología , Insuficiencia Multiorgánica/inmunología , Sepsis/inmunología , Alarminas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Coagulación Sanguínea , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Interacciones Huésped-Patógeno , Humanos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/patología , Insuficiencia Multiorgánica/metabolismo , Insuficiencia Multiorgánica/patología , Sepsis/metabolismo , Sepsis/patología , Transducción de Señal
15.
Blood Adv ; 4(13): 2851-2864, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32579667

RESUMEN

Microvascular thrombosis and blood-brain barrier (BBB) breakdown are key components of cerebral malaria (CM) pathogenesis in African children and are implicated in fatal brain swelling. How Plasmodium falciparum infection causes this endothelial disruption and why this occurs, particularly in the brain, is not fully understood. In this study, we have demonstrated that circulating extracellular histones, equally of host and parasite origin, are significantly elevated in CM patients. Higher histone levels are associated with brain swelling on magnetic resonance imaging. On postmortem brain sections of CM patients, we found that histones are colocalized with P falciparum-infected erythrocytes sequestered inside small blood vessels, suggesting that histones might be expelled locally during parasite schizont rupture. Histone staining on the luminal vascular surface colocalized with thrombosis and leakage, indicating a possible link between endothelial surface accumulation of histones and coagulation activation and BBB breakdown. Supporting this, patient sera or purified P falciparum histones caused disruption of barrier function and were toxic to cultured human brain endothelial cells, which were abrogated with antihistone antibody and nonanticoagulant heparin. Overall, our data support a role for histones of parasite and host origin in thrombosis, BBB breakdown, and brain swelling in CM, processes implicated in the causal pathway to death. Neutralizing histones with agents such as nonanticoagulant heparin warrant exploration to prevent brain swelling in the development or progression of CM and thereby to improve outcomes.


Asunto(s)
Malaria Cerebral , Parásitos , Trombosis , Animales , Encéfalo , Niño , Células Endoteliales , Endotelio , Histonas , Humanos , Plasmodium falciparum , Trombosis/etiología
16.
J Immunol ; 204(10): 2712-2721, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32269097

RESUMEN

C-reactive protein (CRP) can increase up to 1000-fold in blood and form complexes with very low density lipoproteins (VLDL). These complexes are associated with worse outcomes for septic patients, and this suggests a potential pathological role in sepsis. Complex formation is heightened when CRP is over 200 mg/l and levels are associated with the severity of sepsis and blood bacterial culture positivity. Using a mouse bacteremia model, blood bacterial clearance can be delayed by i.v. injection of CRP-VLDL complexes. Complexes are more efficiently taken up by activated U937 cells in vitro and Kupffer cells in vivo than VLDL alone. Both in vitro-generated and naturally occurring CRP-VLDL complexes reduce phagocytosis of bacteria by activated U937 cells. Fcγ and scavenger receptors are involved and a competitive mechanism for clearance of CRP-VLDL complexes and bacteria is demonstrated. Interaction of phosphocholine groups on VLDL with CRP is the major driver for complex formation and phosphocholine can disrupt the complexes to reverse their inhibitory effects on phagocytosis and bacterial clearance. Increased formation of CRP-VLDL complexes is therefore harmful and could be a novel target for therapy in sepsis.


Asunto(s)
Bacteriemia/metabolismo , Proteína C-Reactiva/metabolismo , Macrófagos del Hígado/fisiología , Lipoproteínas VLDL/metabolismo , Sepsis/metabolismo , Anciano , Animales , Proteína C-Reactiva/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mutación/genética , Fagocitosis , Fosforilcolina/metabolismo , Unión Proteica , Receptores de IgG/metabolismo , Células U937
17.
World J Gastroenterol ; 26(47): 7513-7527, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33384551

RESUMEN

BACKGROUND: Liver fibrosis progressing to liver cirrhosis and hepatic carcinoma is very common and causes more than one million deaths annually. Fibrosis develops from recurrent liver injury but the molecular mechanisms are not fully understood. Recently, the TLR4-MyD88 signaling pathway has been reported to contribute to fibrosis. Extracellular histones are ligands of TLR4 but their roles in liver fibrosis have not been investigated. AIM: To investigate the roles and potential mechanisms of extracellular histones in liver fibrosis. METHODS: In vitro, LX2 human hepatic stellate cells (HSCs) were treated with histones in the presence or absence of non-anticoagulant heparin (NAHP) for neutralizing histones or TLR4-blocking antibody. The resultant cellular expression of collagen I was detected using western blotting and immunofluorescent staining. In vivo, the CCl4-induced liver fibrosis model was generated in male 6-week-old ICR mice and in TLR4 or MyD88 knockout and parental mice. Circulating histones were detected and the effect of NAHP was evaluated. RESULTS: Extracellular histones strongly stimulated LX2 cells to produce collagen I. Histone-enhanced collagen expression was significantly reduced by NAHP and TLR4-blocking antibody. In CCl4-treated wild type mice, circulating histones were dramatically increased and maintained high levels during the duration of fibrosis-induction. Injection of NAHP not only reduced alanine aminotransferase and liver injury scores, but also significantly reduced fibrogenesis. Since the TLR4-blocking antibody reduced histone-enhanced collagen I production in HSC, the CCl4 model with TLR4 and MyD88 knockout mice was used to demonstrate the roles of the TLR4-MyD88 signaling pathway in CCl4-induced liver fibrosis. The levels of liver fibrosis were indeed significantly reduced in knockout mice compared to wild type parental mice. CONCLUSION: Extracellular histones potentially enhance fibrogenesis via the TLR4-MyD88 signaling pathway and NAHP has therapeutic potential by detoxifying extracellular histones.


Asunto(s)
Histonas , Receptor Toll-Like 4 , Animales , Tetracloruro de Carbono/toxicidad , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos ICR , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo
18.
Am J Respir Crit Care Med ; 200(7): 869-880, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31162936

RESUMEN

Rationale: Neutrophil extracellular traps (NETs) are important in the host defense against infection, but they also promote intravascular coagulation and multiorgan failure in animal models. Their clinical significance remains unclear, and available assays for patient care lack specificity and reliability.Objectives: To establish a novel assay and test its clinical significance.Methods: A prospective cohort of 341 consecutive adult ICU patients was recruited. The NET-forming capacity of ICU admission blood samples was semiquantified by directly incubating patient plasma with isolated neutrophils ex vivo. The association of NET-forming capacity with Sequential Organ Failure Assessment scores, disseminated intravascular coagulation, and 28-day mortality was analyzed and compared with available NET assays.Measurements and Main Results: Using the novel assay, we could stratify ICU patients into four groups with absent (22.0%), mild (49.9%), moderate (14.4%), and strong (13.8%) NET formation, respectively. Strong NET formation was predominantly found in sepsis (P < 0.0001). Adjusted by Acute Physiology and Chronic Health Evaluation II score, multivariate regression showed that the degree of NET formation could independently predict disseminated intravascular coagulation and mortality, whereas other NET assays (e.g., cell-free DNA, myeloperoxidase, and myeloperoxidase-DNA complexes) could not. IL-8 concentrations were found to be strongly associated with NET formation, and inhibiting IL-8 significantly attenuated NETosis. Mitogen-activated protein kinase activation by IL-8 has been identified as a major pathway of NET formation in patients.Conclusions: This assay directly measures the NET-forming capacity in patient plasma. This could guide clinical management and enable identification of NET-inducing factors in individual patients for targeted treatment and personalized ICU medicine.


Asunto(s)
Coagulación Intravascular Diseminada/epidemiología , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Sepsis/metabolismo , APACHE , Anciano , Enfermedades Cardiovasculares/metabolismo , Estudios de Cohortes , Enfermedad Crítica , Femenino , Enfermedades Gastrointestinales/metabolismo , Humanos , Unidades de Cuidados Intensivos , Interleucina-8/metabolismo , Enfermedades Renales/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mortalidad , Análisis Multivariante , Enfermedades del Sistema Nervioso/metabolismo , Puntuaciones en la Disfunción de Órganos , Estudios Prospectivos , Reproducibilidad de los Resultados , Enfermedades Respiratorias/metabolismo , Medición de Riesgo , Heridas y Lesiones/metabolismo
19.
Crit Care Med ; 47(8): e677-e684, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31162199

RESUMEN

OBJECTIVES: Multiple organ dysfunction syndrome is characterized by simultaneous multiple organ failure, which is the leading cause of death in acute critically ill patients. However, what mediates multiple organ dysfunction syndrome is not fully understood. The discovery of toxic effects by extracellular histones on different individual organs strongly suggests their involvement in multiple organ dysfunction syndrome. In this study, we investigate whether circulating histones are major mediators of multiple organ dysfunction syndrome in acute critical illnesses. DESIGN: Combination of retrospective clinical studies and animal models with intervention. SETTING: ICU in a tertiary hospital and research laboratories. PATIENTS: Four hundred and twenty ICU patients, including sepsis (140), severe trauma (63), severe pancreatitis (89), and other admission diagnoses (128). LABORATORY INVESTIGATION: Cells from major organs are treated with calf thymus histones or histone-containing sera. Animal models for sepsis, trauma, and acute pancreatitis are treated with antihistone reagents. INTERVENTION: Antihistone reagents in in vitro, ex vivo, and animal models. MEASUREMENT AND MAIN RESULTS: Retrospective analysis of a prospectively recruited ICU cohort demonstrated a strong correlation between circulating histones and organ injury markers and Sequential Organ Failure Assessment scores. Ex vivo experiments showed that patient sera containing high histone levels were toxic to cultured cells from different origins, suggesting their universal toxicity to multiple organs. Animal models of sepsis, trauma, and pancreatitis further demonstrated a temporal correlation between histone levels and disease severity and multiple organ injury. Importantly, antihistone reagents, that is, antihistone single-chain variable fragment and nonanticoagulant heparin, could dramatically reduce multiple organ injury, particularly of the heart and lungs, and improve survival in mouse models. CONCLUSIONS: High levels of circulating histones are major mediators of multiple organ dysfunction syndrome. Our results indicate that monitoring upon ICU admission could inform on disease severity and developing antihistone therapy holds great potential of reducing multiple organ dysfunction syndrome and improving survival of critically ill patients.


Asunto(s)
Enfermedad Crítica , Histonas/sangre , Insuficiencia Multiorgánica/sangre , Sepsis/sangre , Biomarcadores/sangre , Humanos , Unidades de Cuidados Intensivos , Puntuaciones en la Disfunción de Órganos , Estudios Retrospectivos
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA