Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(12): 18900-18915, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38353819

RESUMEN

A new magnetic nanoparticle modified with sodium tungstate (Mnp-Si-W) was synthesized and employed for the sorption of molybdenum from aqueous solutions. The prepared nanoparticles (Mnp-Si-W) were characterized by different advanced techniques. Different parameters that influenced the adsorption percent of Mo(VI) were investigated using a batch process. Based on a systematic investigation of the adsorption isotherms and kinetics models, Mo(VI) adsorption follows the Langmuir model and pseudo-second-order kinetics. According to the Langmuir isotherm model, the Mnp-Si-W nanoparticles exhibited a maximum adsorption capacity of 182.03 mg g-1 for Mo(VI) at pH 2.0. The effect of competing ions showed that the prepared nanoparticles have a high selectivity for the sorption of molybdenum. Moreover, the effect of some interfering anions on Mo(VI) ion sorption is found in the following order: phosphate < sulfate < chromate. Finally, the nanoparticle (Mnp-Si-W) can be successfully reused five times.


Asunto(s)
Nanopartículas de Magnetita , Compuestos de Tungsteno , Contaminantes Químicos del Agua , Adsorción , Molibdeno/química , Nanopartículas de Magnetita/química , Sulfatos , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis , Soluciones
2.
ACS Omega ; 7(12): 10447-10457, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35382267

RESUMEN

Now the wide use of nanooxides is attributed to their remarkable collection of properties. Nanocomposites have an impressive variety of important applications. A thermal decomposition approach provides a more optimistic method for nanocrystal synthesis due to the low cost, high efficiency, and expectations for large-scale production. Therefore, in this study a new eco-friendly nanooxide composite with sorption characteristics for europium (Eu(III)) and strontium (Sr(II)) was synthesized by a one-step thermal treatment process using earth-abundant tafla clay as a starting material to prepare a modified tafla (M-Taf) nanocomposite. The synthesized nancomposite was characterized by different techniques before and after sorption processes. Different factors that affected the sorption behavior of Eu(III) and Sr(II) in aqueous media by the M-Taf nanocomposite were studied. The results obtained illustrated that the kinetics of sorption of Eu(III) and Sr(II) by the M-Taf nanocomposite are obeyed according to the pseudo-second order and controlled by a Langmuir isotherm model with maximum sorption capacities (Q max) of 25.5 and 23.36 mg/g for Eu(III) and Sr(II), respectively. Also, this novel low-cost and eco-friendly sorbent has promising properties and can be used to separate and retain some radionuclides in different applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA