Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Regen Med ; 7(1): 32, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750773

RESUMEN

The wound healing response is one of most primitive and conserved physiological responses in the animal kingdom, as restoring tissue integrity/homeostasis can be the difference between life and death. Wound healing in mammals is mediated by immune cells and inflammatory signaling molecules that regulate tissue resident cells, including local progenitor cells, to mediate closure of the wound through formation of a scar. Proteoglycan 4 (PRG4), a protein found throughout the animal kingdom from fish to elephants, is best known as a glycoprotein that reduces friction between articulating surfaces (e.g. cartilage). Previously, PRG4 was also shown to regulate the inflammatory and fibrotic response. Based on this, we asked whether PRG4 plays a role in the wound healing response. Using an ear wound model, topical application of exogenous recombinant human (rh)PRG4 hastened wound closure and enhanced tissue regeneration. Our results also suggest that rhPRG4 may impact the fibrotic response, angiogenesis/blood flow to the injury site, macrophage inflammatory dynamics, recruitment of immune and increased proliferation of adult mesenchymal progenitor cells (MPCs) and promoting chondrogenic differentiation of MPCs to form the auricular cartilage scaffold of the injured ear. These results suggest that PRG4 has the potential to suppress scar formation while enhancing connective tissue regeneration post-injury by modulating aspects of each wound healing stage (blood clotting, inflammation, tissue generation and tissue remodeling). Therefore, we propose that rhPRG4 may represent a potential therapy to mitigate scar and improve wound healing.

2.
J Orthop Res ; 37(10): 2077-2088, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31119776

RESUMEN

Proteoglycan 4 (PRG4) is a mucin-like glycoprotein important for joint health. Mice lacking Prg4 demonstrate degeneration of the cartilage and altered skeletal morphology. The purpose of this study was to examine if Prg4 deficiency leads to subchondral bone defects and if these defects could be mitigated through intra-articular injection of recombinant human PRG4 (rhPRG4). Mice deficient in Prg4 expression demonstrated increased cartilage thickness and increased subchondral bone porosity compared with C57BL/6 controls. While the porosity of the subchondral bone of Prg4-/- mice decreased over time with maturation, intra-articular injection of rhPRG4 was able to forestall the increase in porosity. In contrast, neither hyaluronan (HA) nor methylprednisolone injections had beneficial effects on the subchondral bone porosity in the Prg4 knockout mice. Bone marrow progenitor cells from Prg4-/- mice demonstrated reduced osteogenic differentiation capacity at 4 weeks of age, but not at 16 weeks of age. While most studies on PRG4/lubricin focus on the health of the cartilage, this study demonstrates that PRG4 plays a role in the maturation of the subchondral bone. Furthermore, increasing joint lubrication/viscosupplementation through injection of HA or controlling joint inflammation through injection of methylprednisolone may help maintain the cartilage surface, but had no positive effect on the subchondral bone in animals lacking Prg4. Therefore, alterations in the subchondral bone in models with absent or diminished Prg4 expression should not be overlooked when investigating changes within the articular cartilage regarding the pathogenesis of osteoarthritis/arthrosis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2077-2088, 2019.


Asunto(s)
Densidad Ósea , Huesos/efectos de los fármacos , Huesos/patología , Proteoglicanos/deficiencia , Proteoglicanos/uso terapéutico , Animales , Cartílago Articular/patología , Femenino , Fémur/patología , Humanos , Ácido Hialurónico/farmacología , Inflamación , Inyecciones Intraarticulares , Masculino , Metilprednisolona/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis , Porosidad , Proteoglicanos/genética , Proteínas Recombinantes/uso terapéutico , Tibia/patología
3.
Dis Model Mech ; 11(10)2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30305302

RESUMEN

Cartilage degeneration after injury affects a significant percentage of the population, including those that will go on to develop osteoarthritis (OA). Like humans, most mammals, including mice, are incapable of regenerating injured cartilage. Interestingly, it has previously been shown that p21 (Cdkn1a) knockout (p21-/-) mice demonstrate auricular (ear) cartilage regeneration. However, the loss of p21 expression is highly correlated with the development of numerous types of cancer and autoimmune diseases, limiting the therapeutic translation of these findings. Therefore, in this study, we employed a screening approach to identify an inhibitor (17-DMAG) that negatively regulates the expression of p21. We also validated that this compound can induce chondrogenesis in vitro (in adult mesenchymal stem cells) and in vivo (auricular cartilage injury model). Furthermore, our results suggest that 17-DMAG can induce the proliferation of terminally differentiated chondrocytes (in vitro and in vivo), while maintaining their chondrogenic phenotype. This study provides new insights into the regulation of chondrogenesis that might ultimately lead to new therapies for cartilage injury and/or OA.


Asunto(s)
Benzoquinonas/farmacología , Condrogénesis/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Lactamas Macrocíclicas/farmacología , Animales , Biomarcadores/metabolismo , Cartílago Articular/efectos de los fármacos , Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/metabolismo , Cartílago Articular/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Transcripción Genética/efectos de los fármacos
4.
J Orthop Res ; 36(11): 2923-2931, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29978918

RESUMEN

The objective of this study was to determine the effect of different sliding interface materials (counterface) on the cartilage lubricating ability of proteoglycan 4 (PRG4) and hyaluronan (HA) by measuring the kinetic coefficient of friction on cartilage-glass and cartilage-cartilage interfaces over a wide range of sliding velocities. The lubrication properties of PRG4 and HA were assessed at cartilage-glass and cartilage-cartilage interfaces using a previously described test setup with a stationary area of contact. Samples were articulated at varying effective sliding velocities of 10, 3, 1, 0.3, 0.1, and 0.01 mm/s. The response of PRG4 and HA as effective friction-reducing cartilage boundary lubricants was varied and was dependent primarily on the test counterface. At a physiological cartilage-cartilage interface both HA and PRG4 effectively reduced friction compared to PBS at slower speeds while at higher speeds PRG4 was similar to PBS, and HA similar to SF. Conversely, at a cartilage-glass interface HA demonstrated no friction reducing ability compared to PBS, and PRG4 appeared just as effective as SF. Cartilage-glass friction coefficients were also significantly greater than cartilage-cartilage friction coefficients. These results indicate the in vitro friction coefficient of putative cartilage boundary lubricants can be affected by the test counterface and suggest that use of synthetic surfaces in studying cartilage boundary lubrication may not always be appropriate for all molecules of interest. As such, care should be taken when interpreting such data, specifically when comparing to in vitro data obtained at a cartilage-cartilage interface, and especially when extrapolating to in vivo situations. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2923-2931, 2018.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Ácido Hialurónico/farmacología , Proteoglicanos/farmacología , Viscosuplementos/farmacología , Animales , Bovinos , Fricción , Vidrio
5.
Ann Biomed Eng ; 44(4): 1128-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26194040

RESUMEN

Proteoglycan 4 (PRG4) is a mucin-like glycoprotein present in synovial fluid and at the surface of articular cartilage. The objectives of this study were to (1) assess the articular cartilage surface adsorption and in vitro cartilage boundary lubricating ability of full-length recombinant human PRG4 (rhPRG4), and (2) cartilage boundary lubricating ability of purified rhPRG4, both alone and in combination with hyaluronan (HA). rhPRG4 adsorption onto articular cartilage explants was assessed by immunohistochemistry and dot blot. An in vitro cartilage-cartilage friction test was used to assess rhPRG4's cartilage boundary lubricating ability compared to bovine PRG4, and that of purified rhPRG4 both alone and in combination with HA. rhPRG4 was able to adsorb to the articular surface, as well as the cut surface, of cartilage explants. The kinetic coefficient of friction of rhPRG4 was similar to that of PRG4 (p = 0.16) and lower than phosphate-buffered saline (p < 0.05), while that of purified rhPRG4 + HA was significantly lower than rhPRG4 alone (p < 0.05). This study demonstrates that rhPRG4 can adsorb to an intact articular cartilage surface and functions as an effective boundary lubricant, both alone and with HA, and provides the foundation for in vivo evaluation of this clinically relevant full-length rhPRG4 for treatment of osteoarthritis.


Asunto(s)
Cartílago Articular/química , Ácido Hialurónico/química , Proteoglicanos/química , Adsorción , Animales , Células CHO , Cartílago Articular/metabolismo , Bovinos , Cricetulus , Humanos , Ácido Hialurónico/metabolismo , Proteoglicanos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodilla de Cuadrúpedos/química , Rodilla de Cuadrúpedos/metabolismo
6.
Connect Tissue Res ; 57(2): 113-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26631309

RESUMEN

PURPOSE: The objectives of this study were to assess the cartilage boundary lubricating ability of (1) nonreduced (NR) disulfide-bonded proteoglycan 4 (PRG4) multimers versus PRG4 monomers and (2) NR versus reduced and alkylated (R/A) PRG4 monomers and to assess (3) the ability of NR PRG4 multimers versus monomers to adsorb to an articular cartilage surface. MATERIALS AND METHODS: PRG4 was separated into two preparations, PRG4 multimer enriched (PRG4Multi+) and PRG4 multimer deficient (PRG4Multi-), using size exclusion chromatography (SEC) and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The cartilage boundary lubricating ability of PRG4Multi+ and PRG4Multi- was compared at a physiological concentration (450 µg/mL) and assessed over a range of concentrations (45, 150, and 450 µg/mL). R/A and NR PRG4Multi- were evaluated at 450 µg/mL. Immunohistochemistry with anti-PRG4 antibody 4D6 was performed to visualize the adsorption of PRG4 preparations to the surface of articular cartilage explants. RESULTS: Separation into enriched populations of PRG4Multi+ and PRG4Multi- was achieved using SEC and was confirmed by SDS-PAGE. PRG4Multi+ and PRG4Multi- both functioned as effective friction-reducing cartilage boundary lubricants at 450 µg/mL, with PRG4Multi+ being more effective than PRG4Multi-. PRG4Multi+ lubricated in a dose-dependent manner, however, PRG4Multi- did not. R/A PRG4Multi- lubricated similar to NR PRG4Multi-. PRG4-containing solutions showed 4D6 immunoreactivity at the articular surface; the immunoreactive intensity of PRG4Multi+ appeared to be similar to SF, whereas PRG4Multi- appeared to have less intensity. CONCLUSIONS: These results demonstrate that the intermolecular disulfide-bonded multimeric structure of PRG4 is important for its ability to adsorb to a cartilage surface and function as a boundary lubricant. These findings contribute to a greater understanding of the molecular basis of cartilage boundary lubrication of PRG4. Elucidating the PRG4 structure-lubrication function relationship will further contribute to the understanding of PRG4's role in diarthrodial joint homeostasis and disease.


Asunto(s)
Cartílago Articular/metabolismo , Disulfuros/metabolismo , Lubrificación , Multimerización de Proteína , Proteoglicanos/química , Proteoglicanos/metabolismo , Adsorción , Animales , Bovinos , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Fricción , Inmunohistoquímica , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA