Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
3.
Diabetes Metab Res Rev ; 40(2): e3777, 2024 Feb.
Article En | MEDLINE | ID: mdl-38375753

BACKGROUND/AIM: Type 1 diabetes is an autoimmune disease that involves the development of autoantibodies against pancreatic islet beta-cell antigens, preceding clinical diagnosis by a period of preclinical disease activity. As screening activity to identify autoantibody-positive individuals increases, a rise in presymptomatic type 1 diabetes individuals seeking medical attention is expected. Current guidance on how to monitor these individuals in a safe but minimally invasive way is limited. This article aims to provide clinical guidance for monitoring individuals with presymptomatic type 1 diabetes to reduce the risk of diabetic ketoacidosis (DKA) at diagnosis. METHODS: Expert consensus was obtained from members of the Fr1da, GPPAD, and INNODIA consortia, three European diabetes research groups. The guidance covers both specialist and primary care follow-up strategies. RESULTS: The guidance outlines recommended monitoring approaches based on age, disease stage and clinical setting. Individuals with presymptomatic type 1 diabetes are best followed up in specialist care. For stage 1, biannual assessments of random plasma glucose and HbA1c are suggested for children, while annual assessments are recommended for adolescents and adults. For stage 2, 3-monthly clinic visits with additional home monitoring are advised. The value of repeat OGTT in stage 1 and the use of continuous glucose monitoring in stage 2 are discussed. Primary care is encouraged to monitor individuals who decline specialist care, following the guidance presented. CONCLUSIONS: As type 1 diabetes screening programs become more prevalent, effective monitoring strategies are essential to mitigate the risk of complications such as DKA. This guidance serves as a valuable resource for clinicians, providing practical recommendations tailored to an individual's age and disease stage, both within specialist and primary care settings.


Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Child , Adolescent , Adult , Humans , Autoantibodies , Blood Glucose Self-Monitoring , Blood Glucose
4.
Diabetes ; 73(4): 565-571, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38232306

Autoantibodies to glutamate decarboxylase (GADA) are widely used in the prediction and classification of type 1 diabetes. GADA radiobinding assays (RBAs) using N-terminally truncated antigens offer improved specificity, but radioisotopes limit the high-throughput potential for population screening. Luciferase-based immunoprecipitation system (LIPS) assays are sensitive and specific alternatives to RBAs with the potential to improve risk stratification. The performance of assays using the Nanoluc luciferase (Nluc)-conjugated GAD65 constructs, Nluc-GAD65(96-585) and full length Nluc-GAD65(1-585), were evaluated in 434 well-characterized serum samples from patients with recent-onset type 1 diabetes and first-degree relatives. Nonradioactive, high-throughput LIPS assays are quicker and require less serum than RBAs. Of 171 relatives previously tested single autoantibody positive for autoantibodies to full-length GAD65 by RBA but had not progressed to diabetes, fewer retested positive by LIPS using either truncated (n = 72) or full-length (n = 111) antigen. The Nluc-GAD65(96-585) truncation demonstrated the highest specificity in LIPS assays overall, but in contrast to RBA, N-terminus truncations did not result in a significant increase in disease-specificity compared with the full-length antigen. This suggests that binding of nonspecific antibodies is affected by the conformational changes resulting from addition of the Nluc antigen. Nluc-GAD65(96-585) LIPS assays offer low-blood-volume, high-specificity GADA tests for screening and diagnostics.


Diabetes Mellitus, Type 1 , Humans , Glutamate Decarboxylase , Sensitivity and Specificity , Autoantibodies , Luciferases/genetics , Immunoprecipitation
5.
EClinicalMedicine ; 64: 102208, 2023 Oct.
Article En | MEDLINE | ID: mdl-37731934

Background: Personalised therapy has emerged as a possibly more efficient approach taking disease heterogeneity into account. The aim of this study was to determine whether recently described subgroups of childhood diabetes have prognostic association with diabetes-specific complications and, therefore, might be a basis for personalised therapies. Methods: We applied a previously developed subgroup classification to pediatric patients (diabetes onset <18 years) from the prospective Diabetes Patient Follow-up (DPV) registry with documented data between January 1, 2000 and March 31, 2022, from diabetes centers in Germany, Austria, Switzerland, and Luxembourg. The classification required information on islet autoantibody status, age, haemoglobin A1c (HbA1c), and body-mass index (BMI-SDS) at disease manifestation, as well as follow up data after 2 and after 4 years, which was available in 22,719 patients. Patients without documented data on these parameters were excluded from the analysis. The cumulative risk of severe hypoglycemia, diabetic ketoacidosis (DKA), retinopathy, and nephropathy were analysed by Kaplan-Meier analyses over a median follow-up of 6.8 years (IQR 4.8-9.6). Findings: Patients were classified into 10 subgroups (P1-P7 islet autoantibody-positive, n = 19,811; N1-N3 islet autoantibody-negative, n = 2908). The groups varied markedly with respect to specific acute and chronic complications. Severe hypoglycemia was a characteristic feature in young islet autoantibody-positive subgroups P1, P3, P4 (10-year risk 46, 46 and 47%) and the islet autoantibody-negative groups N1, N2 (43 and 46%). Nephropathy was identified in patient groups P2 and P5 (10-year risk 16%), which had features of moderate disease such as preserved C-peptide, low HbA1c, and very low frequency of DKA at diabetes onset. Group P7, which was defined by a high BMI, was associated with poor metabolic control, DKA, and retinopathy. In contrast, islet autoantibody-negative patients with high BMI (N3) had a low risk for all four complications. Interpretation: Subgrouping of childhood diabetes at diabetes onset provided prognostic value for the development of acute and chronic diabetes-specific complications. Funding: The DPV initiative is supported by The German Ministry of Education and Research (BMBF) within the German Center for Diabetes Research, the diabetes surveillance of the Robert Koch Institute, the German Diabetes Association (DDG) and INNODIA.

7.
JAMA ; 330(12): 1151-1160, 2023 09 26.
Article En | MEDLINE | ID: mdl-37682551

Importance: The incidence of diabetes in childhood has increased during the COVID-19 pandemic. Elucidating whether SARS-CoV-2 infection is associated with islet autoimmunity, which precedes type 1 diabetes onset, is relevant to disease etiology and future childhood diabetes trends. Objective: To determine whether there is a temporal relationship between SARS-CoV-2 infection and the development of islet autoimmunity in early childhood. Design, Setting, and Participants: Between February 2018 and March 2021, the Primary Oral Insulin Trial, a European multicenter study, enrolled 1050 infants (517 girls) aged 4 to 7 months with a more than 10% genetically defined risk of type 1 diabetes. Children were followed up through September 2022. Exposure: SARS-CoV-2 infection identified by SARS-CoV-2 antibody development in follow-up visits conducted at 2- to 6-month intervals until age 2 years from April 2018 through June 2022. Main Outcomes and Measures: The development of multiple (≥2) islet autoantibodies in follow-up in consecutive samples or single islet antibodies and type 1 diabetes. Antibody incidence rates and risk of developing islet autoantibodies were analyzed. Results: Consent was obtained for 885 (441 girls) children who were included in follow-up antibody measurements from age 6 months. SARS-CoV-2 antibodies developed in 170 children at a median age of 18 months (range, 6-25 months). Islet autoantibodies developed in 60 children. Six of these children tested positive for islet autoantibodies at the same time as they tested positive for SARS-CoV-2 antibodies and 6 at the visit after having tested positive for SARS-CoV-2 antibodies. The sex-, age-, and country-adjusted hazard ratio for developing islet autoantibodies when the children tested positive for SARS-CoV-2 antibodies was 3.5 (95% CI, 1.6-7.7; P = .002). The incidence rate of islet autoantibodies was 3.5 (95% CI, 2.2-5.1) per 100 person-years in children without SARS-CoV-2 antibodies and 7.8 (95% CI, 5.3-19.0) per 100 person-years in children with SARS-CoV-2 antibodies (P = .02). Islet autoantibody risk in children with SARS-CoV-2 antibodies was associated with younger age (<18 months) of SARS-CoV-2 antibody development (HR, 5.3; 95% CI, 1.5-18.3; P = .009). Conclusion and relevance: In young children with high genetic risk of type 1 diabetes, SARS-CoV-2 infection was temporally associated with the development of islet autoantibodies.


COVID-19 , Diabetes Mellitus, Type 1 , Islets of Langerhans , Child, Preschool , Female , Humans , Infant , Antibodies, Viral/immunology , Autoantibodies/immunology , Autoimmunity/immunology , COVID-19/complications , COVID-19/immunology , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Pandemics , SARS-CoV-2 , Islets of Langerhans/immunology , Male , Genetic Predisposition to Disease
8.
Diabetologia ; 66(9): 1633-1642, 2023 09.
Article En | MEDLINE | ID: mdl-37329450

AIMS/HYPOTHESIS: We aimed to determine whether disease severity was reduced at onset of clinical (stage 3) type 1 diabetes in children previously diagnosed with presymptomatic type 1 diabetes in a population-based screening programme for islet autoantibodies. METHODS: Clinical data obtained at diagnosis of stage 3 type 1 diabetes were evaluated in 128 children previously diagnosed with presymptomatic early-stage type 1 diabetes between 2015 and 2022 in the Fr1da study and compared with data from 736 children diagnosed with incident type 1 diabetes between 2009 and 2018 at a similar age in the DiMelli study without prior screening. RESULTS: At the diagnosis of stage 3 type 1 diabetes, children with a prior early-stage diagnosis had lower median HbA1c (51 mmol/mol vs 91 mmol/mol [6.8% vs 10.5%], p<0.001), lower median fasting glucose (5.3 mmol/l vs 7.2 mmol/l, p<0.05) and higher median fasting C-peptide (0.21 nmol/l vs 0.10 nmol/l, p<0.001) compared with children without previous early-stage diagnosis. Fewer participants with prior early-stage diagnosis had ketonuria (22.2% vs 78.4%, p<0.001) or required insulin treatment (72.3% vs 98.1%, p<0.05) and only 2.5% presented with diabetic ketoacidosis at diagnosis of stage 3 type 1 diabetes. Outcomes in children with a prior early-stage diagnosis were not associated with a family history of type 1 diabetes or diagnosis during the COVID-19 pandemic. A milder clinical presentation was observed in children who participated in education and monitoring after early-stage diagnosis. CONCLUSIONS/INTERPRETATION: Diagnosis of presymptomatic type 1 diabetes in children followed by education and monitoring improved clinical presentation at the onset of stage 3 type 1 diabetes.


COVID-19 , Diabetes Mellitus, Type 1 , Humans , Child , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/drug therapy , Pandemics , Public Health , Insulin/therapeutic use
9.
BMC Med ; 21(1): 190, 2023 05 24.
Article En | MEDLINE | ID: mdl-37226224

BACKGROUND: Type 1 diabetes (T1D) is a CD4+ T cell-driven autoimmune disease characterized by the destruction of insulin-producing pancreatic ß-cells by CD8+ T cells. Achieving glycemic targets in T1D remains challenging in clinical practice; new treatments aim to halt autoimmunity and prolong ß-cell survival. IMCY-0098 is a peptide derived from human proinsulin that contains a thiol-disulfide oxidoreductase motif at the N-terminus and was developed to halt disease progression by promoting the specific elimination of pathogenic T cells. METHODS: This first-in-human, 24-week, double-blind phase 1b study evaluated the safety of three dosages of IMCY-0098 in adults diagnosed with T1D < 6 months before study start. Forty-one participants were randomized to receive four bi-weekly injections of placebo or increasing doses of IMCY-0098 (dose groups A/B/C received 50/150/450 µg for priming followed by three further administrations of 25/75/225 µg, respectively). Multiple T1D-related clinical parameters were also assessed to monitor disease progression and inform future development. Long-term follow-up to 48 weeks was also conducted in a subset of patients. RESULTS: Treatment with IMCY-0098 was well tolerated with no systemic reactions; a total of 315 adverse events (AEs) were reported in 40 patients (97.6%) and were related to study treatment in 29 patients (68.3%). AEs were generally mild; no AE led to discontinuation of the study or death. No significant decline in C-peptide was noted from baseline to Week 24 for dose A, B, C, or placebo (mean change - 0.108, - 0.041, - 0.040, and - 0.012, respectively), suggesting no disease progression. CONCLUSIONS: Promising safety profile and preliminary clinical response data support the design of a phase 2 study of IMCY-0098 in patients with recent-onset T1D. TRIAL REGISTRATION: IMCY-T1D-001: ClinicalTrials.gov NCT03272269; EudraCT: 2016-003514-27; and IMCY-T1D-002: ClinicalTrials.gov NCT04190693; EudraCT: 2018-003728-35.


Diabetes Mellitus, Type 1 , Adult , Humans , Diabetes Mellitus, Type 1/drug therapy , CD8-Positive T-Lymphocytes , Immunotherapy , C-Peptide , Autoimmunity , Disease Progression
10.
Front Immunol ; 14: 1112570, 2023.
Article En | MEDLINE | ID: mdl-36817467

GAD-alum given into lymph nodes to Type 1 diabetes (T1D) patients participating in a multicenter, randomized, placebo-controlled double-blind study seemed to have a positive effect for patients with DR3DQ2 haplotype, who showed better preservation of C-peptide than the placebo group. Here we compared the immunomodulatory effect of GAD-alum administered into lymph nodes of patients with T1D versus placebo with focus on patients with DR3DQ2 haplotype. Methods: GAD autoantibodies, GADA subclasses, GAD65-induced cytokine secretion (Luminex panel) and proliferation of peripheral mononuclear cells were analyzed in T1D patients (n=109) who received either three intra-lymphatic injections (one month apart) with 4 µg GAD-alum and oral vitamin D supplementation (2000 IE daily for 120 days), or placebo. Results: Higher GADA, GADA subclasses, GAD65-induced proliferation and cytokine secretion was observed in actively treated patients after the second injection of GAD-alum compared to the placebo group. Following the second injection of GAD-alum, actively treated subjects with DR3DQ2 haplotype had higher GAD65-induced secretion of several cytokine (IL4, IL5, IL7, IL10, IL13, IFNγ, GM-CSF and MIP1ß) and proliferation compared to treated individuals without DR3DQ2. Stratification of samples from GAD-alum treated patients according to C-peptide preservation at 15 months revealed that "good responder" individuals with better preservation of C-peptide secretion, independently of the HLA haplotype, had increased GAD65-induced proliferation and IL13 secretion at 3 months, and a 2,5-fold increase of IL5 and IL10 as compared to "poor responders". The second dose of GAD-alum also induced a more pronounced cytokine secretion in "good responders" with DR3DQ2, compared to few "good responders" without DR3DQ2 haplotype. Conclusion: Patients with DR3DQ2 haplotype had a distinct early cellular immune response to GAD-alum injections into the lymph node, and predominant GAD65-induced IL13 secretion and proliferation that seems to be associated with a better clinical outcome. If confirmed in the ongoing larger randomized double-blind placebo-controlled clinical trial (DIAGNODE-3), including only patients carrying DR3DQ2 haplotype, these results might be used as early surrogate markers for clinical efficacy.


Diabetes Mellitus, Type 1 , Humans , C-Peptide , Cytokines/therapeutic use , Glutamate Decarboxylase , Haplotypes , Immunity, Cellular , Interleukin-10 , Interleukin-13 , Interleukin-5 , HLA Antigens/immunology
11.
Front Endocrinol (Lausanne) ; 14: 1108910, 2023.
Article En | MEDLINE | ID: mdl-36742390

Introduction: Progression to type 1 diabetes has emerged as a complex process with metabolic alterations proposed to be a significant driver of disease. Monitoring products of altered metabolism is a promising tool for determining the risk of type 1 diabetes progression and to supplement existing predictive biomarkers. Methylglyoxal (MG) is a reactive product produced from protein, lipid, and sugar metabolism, providing a more comprehensive measure of metabolic changes compared to hyperglycemia alone. MG forms covalent adducts on nucleic and amino acids, termed MG-advanced glycation end products (AGEs) that associate with type 1 diabetes. Methods: We tested their ability to predict risk of disease and discriminate which individuals with autoimmunity will progress to type 1 diabetes. We measured serum MG-AGEs from 141 individuals without type 1 diabetes and 271 individuals with type 1 diabetes enrolled in the Fr1da cohort. Individuals with type 1 diabetes were at stages 1, 2, and 3. Results: We examined the association of MG-AGEs with type 1 diabetes. MG-AGEs did not correlate with HbA1c or differ between stages 1, 2, and 3 type 1 diabetes. Yet, RNA MG-AGEs were significantly associated with the rate of progression to stage 3 type 1 diabetes, with lower serum levels increasing risk of progression. Discussion: MG-AGEs were able to discriminate which individuals with autoantibodies would progress at a faster rate to stage 3 type 1 diabetes providing a potential new clinical biomarker for determining rate of disease progression and pointing to contributing metabolic pathways.


Diabetes Mellitus, Type 1 , Humans , Pyruvaldehyde , Glycation End Products, Advanced/metabolism , Biomarkers , Dietary Supplements
12.
Diabetologia ; 66(5): 897-912, 2023 05.
Article En | MEDLINE | ID: mdl-36759347

AIMS/HYPOTHESIS: The Islet Autoantibody Standardization Program (IASP) aims to improve the performance of immunoassays measuring autoantibodies in type 1 diabetes and the concordance of results across laboratories. IASP organises international workshops distributing anonymised serum samples to participating laboratories and centralises the collection and analysis of results. In this report, we describe the results of assays measuring IAA submitted to the IASP 2018 and 2020 workshops. METHODS: The IASP distributed uniquely coded sera from individuals with new-onset type 1 diabetes, multiple islet autoantibody-positive individuals, and diabetes-free blood donors in both 2018 and 2020. Serial dilutions of the anti-insulin mouse monoclonal antibody HUI-018 were also included. Sensitivity, specificity, area under the receiver operating characteristic curve (ROC-AUC), partial ROC-AUC at 95% specificity (pAUC95) and concordance of qualitative/quantitative results were compared across assays. RESULTS: Results from 45 IAA assays of seven different formats and from 37 IAA assays of six different formats were submitted to the IASP in 2018 and 2020, respectively. The median ROC-AUC was 0.736 (IQR 0.617-0.803) and 0.790 (IQR 0.730-0.836), while the median pAUC95 was 0.016 (IQR 0.004-0.021) and 0.023 (IQR 0.014-0.026) in the 2018 and 2020 workshops, respectively. Assays largely differed in AUC (IASP 2018 range 0.232-0.874; IASP 2020 range 0.379-0.924) and pAUC95 (IASP 2018 and IASP 2020 range 0-0.032). CONCLUSIONS/INTERPRETATION: Assay formats submitted to this study showed heterogeneous performance. Despite the high variability across laboratories, the in-house radiobinding assay (RBA) remains the gold standard for IAA measurement. However, novel non-radioactive IAA immunoassays showed a good performance and, if further improved, might be considered valid alternatives to RBAs.


Autoantibodies , Diabetes Mellitus, Type 1 , Animals , Mice , Sensitivity and Specificity , ROC Curve , Insulin Antibodies , Reference Standards , Glutamate Decarboxylase
13.
Diabetologia ; 66(1): 93-104, 2023 01.
Article En | MEDLINE | ID: mdl-36195673

AIMS/HYPOTHESIS: The aim of this study was to explore the utility of islet autoantibody (IAb) levels for the prediction of type 1 diabetes in autoantibody-positive children. METHODS: Prospective cohort studies in Finland, Germany, Sweden and the USA followed 24,662 children at increased genetic or familial risk of developing islet autoimmunity and diabetes. For the 1403 who developed IAbs (523 of whom developed diabetes), levels of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA) and insulinoma-associated antigen-2 (IA-2A) were harmonised for analysis. Diabetes prediction models using multivariate logistic regression with inverse probability censored weighting (IPCW) were trained using 10-fold cross-validation. Discriminative power for disease was estimated using the IPCW concordance index (C index) with 95% CI estimated via bootstrap. RESULTS: A baseline model with covariates for data source, sex, diabetes family history, HLA risk group and age at seroconversion with a 10-year follow-up period yielded a C index of 0.61 (95% CI 0.58, 0.63). The performance improved after adding the IAb positivity status for IAA, GADA and IA-2A at seroconversion: C index 0.72 (95% CI 0.71, 0.74). Using the IAb levels instead of positivity indicators resulted in even better performance: C index 0.76 (95% CI 0.74, 0.77). The predictive power was maintained when using the IAb levels alone: C index 0.76 (95% CI 0.75, 0.76). The prediction was better for shorter follow-up periods, with a C index of 0.82 (95% CI 0.81, 0.83) at 2 years, and remained reasonable for longer follow-up periods, with a C index of 0.76 (95% CI 0.75, 0.76) at 11 years. Inclusion of the results of a third IAb test added to the predictive power, and a suitable interval between seroconversion and the third test was approximately 1.5 years, with a C index of 0.78 (95% CI 0.77, 0.78) at 10 years follow-up. CONCLUSIONS/INTERPRETATION: Consideration of quantitative patterns of IAb levels improved the predictive power for type 1 diabetes in IAb-positive children beyond qualitative IAb positivity status.


Diabetes Mellitus, Type 1 , Child , Humans , Prospective Studies , Finland , Germany , Autoantibodies
14.
Dtsch Arztebl Int ; 119(45): 765-770, 2022 11 11.
Article En | MEDLINE | ID: mdl-36345616

BACKGROUND: The SARS-CoV-2 pandemic is ongoing in Germany. Children and adolescents are increasingly being infected, and many cases presumably remain undetected and unreported. Sero-epidemiological studies can help estimate the true number of infections. METHODS: From January 2020 to June 2022, 59 786 persons aged 1-17 years were tested for SARS-CoV-2 antibodies as part of a screening program for presymptomatic type 1 diabetes in the German federal state of Bavaria (the Fr1da study). RESULTS: In June 2022, the seroprevalence in the overall population was 73.5%. The seroprevalence was significantly higher in school-age children (from 5 to 10 years of age) than in preschool children (ages 1-4): 84.4% vs. 66.6%, p <0.001. In contrast, in November 2021, before the appearance of the omicron variant, the overall seroprevalence was 14.7% (16.2% of school-age children, 13.0% of preschool children, p = 0.06). In the overall collective, seroprevalence increased fivefold from the fall of 2021 to June 2022 (by a factor of 5.2 in school-age children and 5.1 in preschool children). Similar seroprevalences, with smaller case numbers, were observed in June 2022 in the corresponding Fr1da studies in Saxony and Northern Germany: 87.8% and 76.7%, respectively. CONCLUSION: Monthly case counts reveal a substantial rise in SARS-CoV-2-infections among children and adolescents from late 2021 to mid-2022. The high percentage of preschool and school-age children who have been infected with SARS-CoV-2, in a population that has low vaccination coverage, should be taken into account in the development of health policies.


COVID-19 , SARS-CoV-2 , Adolescent , Child, Preschool , Humans , Child , Seroepidemiologic Studies , COVID-19/epidemiology , Educational Status
16.
J Clin Invest ; 132(20)2022 10 17.
Article En | MEDLINE | ID: mdl-36250461

The etiology of type 1 diabetes has polygenic and environmental determinants that lead to autoimmune responses against pancreatic ß cells and promote ß cell death. The autoimmunity is considered silent without metabolic consequences until late preclinical stages,and it remains unknown how early in the disease process the pancreatic ß cell is compromised. To address this, we investigated preprandial nonfasting and postprandial blood glucose concentrations and islet autoantibody development in 1,050 children with high genetic risk of type 1 diabetes. Pre- and postprandial blood glucose decreased between 4 and 18 months of age and gradually increased until the final measurements at 3.6 years of age. Determinants of blood glucose trajectories in the first year of life included sex, body mass index, glucose-related genetic risk scores, and the type 1 diabetes-susceptible INS gene. Children who developed islet autoantibodies had early elevations in blood glucose concentrations. A sharp and sustained rise in postprandial blood glucose was observed at around 2 months prior to autoantibody seroconversion, with further increases in postprandial and, subsequently, preprandial values after seroconversion. These findings show heterogeneity in blood glucose control in infancy and early childhood and suggest that islet autoimmunity is concurrent or subsequent to insults on the pancreatic islets.


Diabetes Mellitus, Type 1 , Islets of Langerhans , Autoantibodies , Autoimmunity , Blood Glucose , Child , Child, Preschool , Genetic Predisposition to Disease , Humans
17.
Diabetes ; 71(12): 2632-2641, 2022 12 01.
Article En | MEDLINE | ID: mdl-36112006

In our previous data-driven analysis of evolving patterns of islet autoantibodies (IAb) against insulin (IAA), GAD (GADA), and islet antigen 2 (IA-2A), we discovered three trajectories, characterized according to multiple IAb (TR1), IAA (TR2), or GADA (TR3) as the first appearing autoantibodies. Here we examined the evolution of IAb levels within these trajectories in 2,145 IAb-positive participants followed from early life and compared those who progressed to type 1 diabetes (n = 643) with those remaining undiagnosed (n = 1,502). With use of thresholds determined by 5-year diabetes risk, four levels were defined for each IAb and overlaid onto each visit. In diagnosed participants, high IAA levels were seen in TR1 and TR2 at ages <3 years, whereas IAA remained at lower levels in the undiagnosed. Proportions of dwell times (total duration of follow-up at a given level) at the four IAb levels differed between the diagnosed and undiagnosed for GADA and IA-2A in all three trajectories (P < 0.001), but for IAA dwell times differed only within TR2 (P < 0.05). Overall, undiagnosed participants more frequently had low IAb levels and later appearance of IAb than diagnosed participants. In conclusion, while it has long been appreciated that the number of autoantibodies is an important predictor of type 1 diabetes, consideration of autoantibody levels within the three autoimmune trajectories improved differentiation of IAb-positive children who progressed to type 1 diabetes from those who did not.


Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Child, Preschool , Diabetes Mellitus, Type 1/diagnosis , Glutamate Decarboxylase , Insulin , Autoantibodies
19.
Diabetologia ; 65(12): 2121-2131, 2022 12.
Article En | MEDLINE | ID: mdl-36028774

AIMS/HYPOTHESIS: The aim of this study was to develop strategies that identify children from the general population who have late-stage presymptomatic type 1 diabetes and may, therefore, benefit from immune intervention. METHODS: We tested children from Bavaria, Germany, aged 1.75-10 years, enrolled in the Fr1da public health screening programme for islet autoantibodies (n=154,462). OGTT and HbA1c were assessed in children with multiple islet autoantibodies for diagnosis of presymptomatic stage 1 (normoglycaemia) or stage 2 (dysglycaemia) type 1 diabetes. Cox proportional hazards and penalised logistic regression of autoantibody, genetic, metabolic and demographic information were used to develop a progression likelihood score to identify children with stage 1 type 1 diabetes who progressed to stage 3 (clinical) type 1 diabetes within 2 years. RESULTS: Of 447 children with multiple islet autoantibodies, 364 (81.4%) were staged. Undiagnosed stage 3 type 1 diabetes, presymptomatic stage 2, and stage 1 type 1 diabetes were detected in 41 (0.027% of screened children), 30 (0.019%) and 293 (0.19%) children, respectively. The 2 year risk for progression to stage 3 type 1 diabetes was 48% (95% CI 34, 58) in children with stage 2 type 1 diabetes (annualised risk, 28%). HbA1c, islet antigen-2 autoantibody positivity and titre, and the 90 min OGTT value were predictors of progression in children with stage 1 type 1 diabetes. The derived progression likelihood score identified substages corresponding to ≤90th centile (stage 1a, n=258) and >90th centile (stage 1b, n=29; 0.019%) of stage 1 children with a 4.1% (95% CI 1.4, 6.7) and 46% (95% CI 21, 63) 2 year risk of progressing to stage 3 type 1 diabetes, respectively. CONCLUSIONS/INTERPRETATION: Public health screening for islet autoantibodies found 0.027% of children to have undiagnosed clinical type 1 diabetes and 0.038% to have undiagnosed presymptomatic stage 2 or stage 1b type 1 diabetes, with 50% risk to develop clinical type 1 diabetes within 2 years.


Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Diabetes Mellitus, Type 1/epidemiology , Islets of Langerhans/metabolism , Public Health , Autoantibodies , Mass Screening , Disease Progression
20.
EBioMedicine ; 82: 104118, 2022 Aug.
Article En | MEDLINE | ID: mdl-35803018

BACKGROUND: Diabetes in childhood and adolescence includes autoimmune and non-autoimmune forms with heterogeneity in clinical and biochemical presentations. An unresolved question is whether there are subtypes, endotypes, or theratypes within these forms of diabetes. METHODS: The multivariable classification and regression tree (CART) analysis method was used to identify subgroups of diabetes with differing residual C-peptide levels in patients with newly diagnosed diabetes before 20 years of age (n=1192). The robustness of the model was assessed in a confirmation and prognosis cohort (n=2722). FINDINGS: The analysis selected age, haemoglobin A1c (HbA1c), and body mass index (BMI) as split parameters that classified patients into seven islet autoantibody-positive and three autoantibody-negative groups. There were substantial differences in genetics, inflammatory markers, diabetes family history, lipids, 25-OH-Vitamin D3, insulin treatment, insulin sensitivity and insulin autoimmunity among the groups, and the method stratified patients with potentially different pathogeneses and prognoses. Interferon-É£ and/or tumour necrosis factor inflammatory signatures were enriched in the youngest islet autoantibody-positive groups and in patients with the lowest C-peptide values, while higher BMI and type 2 diabetes characteristics were found in older patients. The prognostic relevance was demonstrated by persistent differences in HbA1c at 7 years median follow-up. INTERPRETATION: This multivariable analysis revealed subgroups of young patients with diabetes that have potential pathogenetic and therapeutic relevance. FUNDING: The work was supported by funds from the German Federal Ministry of Education and Research (01KX1818; FKZ 01GI0805; DZD e.V.), the Innovative Medicine Initiative 2 Joint Undertaking INNODIA (grant agreement No. 115797), the German Robert Koch Institute, and the German Diabetes Association.


Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Adolescent , Autoantibodies , Autoimmunity , C-Peptide , Child , Diabetes Mellitus, Type 1/diagnosis , Glycated Hemoglobin/analysis , Humans , Young Adult
...