Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(13): 9372-9383, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34110803

RESUMEN

The chemical speciation of iron (Fe) in oceans is influenced by ambient pH, dissolved oxygen, and the concentrations and strengths of the binding sites of dissolved organic matter (DOM). Here, we derived new nonideal competitive adsorption (NICA) constants for Fe(III) binding to marine DOM via pH-Fe titrations. We used the constants to calculate Fe(III) speciation and derive the apparent Fe(III) solubility (SFe(III)app) in the ambient water column across the Peruvian shelf and slope region. We define SFe(III)app as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to DOM at a free Fe (Fe3+) concentration equal to the limiting solubility of Fe hydroxide (Fe(OH)3(s)). A ca. twofold increase in SFe(III)app in the oxygen minimum zone (OMZ) compared to surface waters is predicted. The increase results from a one order of magnitude decrease in H+ concentration which impacts both Fe(III) hydroxide solubility and organic complexation. A correlation matrix suggests that changes in pH have a larger impact on SFe(III)app and Fe(III) speciation than DOM in this region. Using Fe(II) measurements, we calculated ambient DFe(III) and compared the value with the predicted SFe(III)app. The underlying distribution of ambient DFe(III) largely reflected the predicted SFe(III)app, indicating that decreased pH as a result of OMZ intensification and ocean acidification may increase SFe(III)app with potential impacts on surface DFe inventories.


Asunto(s)
Hierro , Agua de Mar , Concentración de Iones de Hidrógeno , Perú , Solubilidad
2.
Nat Commun ; 12(1): 884, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563991

RESUMEN

Residual macronutrients in the surface Southern Ocean result from restricted biological utilization, caused by low wintertime irradiance, cold temperatures, and insufficient micronutrients. Variability in utilization alters oceanic CO2 sequestration at glacial-interglacial timescales. The role for insufficient iron has been examined in detail, but manganese also has an essential function in photosynthesis and dissolved concentrations in the Southern Ocean can be strongly depleted. However, clear evidence for or against manganese limitation in this system is lacking. Here we present results from ten experiments distributed across Drake Passage. We found manganese (co-)limited phytoplankton growth and macronutrient consumption in central Drake Passage, whilst iron limitation was widespread nearer the South American and Antarctic continental shelves. Spatial patterns were reconciled with the different rates and timescales for removal of each element from seawater. Our results suggest an important role for manganese in modelling Southern Ocean productivity and understanding major nutrient drawdown in glacial periods.


Asunto(s)
Manganeso/metabolismo , Nutrientes/metabolismo , Fitoplancton/crecimiento & desarrollo , Agua de Mar/microbiología , Regiones Antárticas , Ciclo del Carbono , Hierro/análisis , Hierro/metabolismo , Manganeso/análisis , Nutrientes/análisis , Océanos y Mares , Fotosíntesis , Fitoplancton/metabolismo , Agua de Mar/química , América del Sur
3.
Nat Commun ; 10(1): 5261, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748607

RESUMEN

Marine phytoplankton growth at high latitudes is extensively limited by iron availability. Icebergs are a vector transporting the bioessential micronutrient iron into polar oceans. Therefore, increasing iceberg fluxes due to global warming have the potential to increase marine productivity and carbon export, creating a negative climate feedback. However, the magnitude of the iceberg iron flux, the subsequent fertilization effect and the resultant carbon export have not been quantified. Using a global analysis of iceberg samples, we reveal that iceberg iron concentrations vary over 6 orders of magnitude. Our results demonstrate that, whilst icebergs are the largest source of iron to the polar oceans, the heterogeneous iron distribution within ice moderates iron delivery to offshore waters and likely also affects the subsequent ocean iron enrichment. Future marine productivity may therefore be not only sensitive to increasing total iceberg fluxes, but also to changing iceberg properties, internal sediment distribution and melt dynamics.


Asunto(s)
Cubierta de Hielo/química , Hierro/análisis , Regiones Antárticas , Regiones Árticas , Argentina , Carbono/metabolismo , Chile , Congelación , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Calentamiento Global , Groenlandia , Islandia , Hierro/metabolismo , Océanos y Mares , Fitoplancton/metabolismo , Agua de Mar/análisis , Agua de Mar/química , Svalbard
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA