Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38302457

RESUMEN

Cypin (cytosolic postsynaptic density protein 95 interactor) is the primary guanine deaminase in the central nervous system (CNS), promoting the metabolism of guanine to xanthine, an important reaction in the purine salvage pathway. Activation of the purine salvage pathway leads to the production of uric acid (UA). UA has paradoxical effects, specifically in the context of CNS injury as it confers neuroprotection, but it also promotes pain. Since neuropathic pain is a comorbidity associated with spinal cord injury (SCI), we postulated that small molecule cypin inhibitor B9 treatment could attenuate SCI-induced neuropathic pain, potentially by interfering with UA production. However, we also considered that this treatment could hinder the neuroprotective effects of UA and, in doing so, exacerbate SCI outcomes. To address our hypothesis, we induced a moderate midthoracic contusion SCI in female mice and assessed whether transient intrathecal administration of B9, starting at 1 d postinjury (dpi) until 7 dpi, attenuates mechanical pain in hindlimbs at 3 weeks pi. We also evaluated the effects of B9 on the spontaneous recovery of locomotor function. We found that B9 alleviates mechanical pain but does not affect locomotor function. Importantly, B9 does not exacerbate lesion volume at the epicenter. In accordance with these findings, B9 does not aggravate glutamate-induced excitotoxic death of SC neurons in vitro. Moreover, SCI-induced increased astrocyte reactivity at the glial scar is not altered by B9 treatment. Our data suggest that B9 treatment reduces mechanical pain without exerting major detrimental effects following SCI.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Ratones , Femenino , Animales , Hiperalgesia/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Neuronas/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Neuralgia/metabolismo , Purinas , Médula Espinal/metabolismo
2.
Brain Behav Immun ; 102: 163-178, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35176442

RESUMEN

Toll-like receptors (TLRs) are innate immune receptors that are expressed in immune cells as well as glia and neurons of the central and peripheral nervous systems. They are best known for their role in the host defense in response to pathogens and for the induction of inflammation in infectious and non-infectious diseases. In the central nervous system (CNS), TLRs modulate glial and neuronal functions as well as innate immunity and neuroinflammation under physiological or pathophysiological conditions. The majority of the studies on TLRs in CNS pathologies investigated their overall contribution without focusing on a particular cell type, or they analyzed TLRs in glia and infiltrating immune cells in the context of neuroinflammation and cellular activation. The role of neuronal TLRs in CNS diseases and injuries has received little attention and remains underappreciated. The primary goal of this review is to summarize findings demonstrating the pivotal and unique roles of neuronal TLRs in neuropathic pain, Alzheimer's disease, Parkinson's disease and CNS injuries. We discuss how the current findings warrant future investigations to better define the specific contributions of neuronal TLRs to these pathologies. We underline the paucity of information regarding the role of neuronal TLRs in other neurodegenerative, demyelinating, and psychiatric diseases. We draw attention to the importance of broadening research on neuronal TLRs in view of emerging evidence demonstrating their distinctive functional properties.


Asunto(s)
Neuralgia , Traumatismos del Sistema Nervioso , Sistema Nervioso Central/metabolismo , Humanos , Inmunidad Innata , Neuralgia/metabolismo , Neuronas/metabolismo , Receptores Toll-Like/metabolismo , Traumatismos del Sistema Nervioso/metabolismo , Traumatismos del Sistema Nervioso/patología
3.
Brain Res ; 1758: 147291, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33516810

RESUMEN

Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.


Asunto(s)
Astrocitos/patología , Enfermedades Neurodegenerativas/patología , Animales , Humanos
4.
Brain Behav Immun ; 91: 740-755, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039660

RESUMEN

Central nervous system (CNS) innate immunity plays essential roles in infections, neurodegenerative diseases, and brain or spinal cord injuries. Astrocytes and microglia are the principal cells that mediate innate immunity in the CNS. Pattern recognition receptors (PRRs), expressed by astrocytes and microglia, sense pathogen-derived or endogenous ligands released by damaged cells and initiate the innate immune response. Toll-like receptors (TLRs) are a well-characterized family of PRRs. The contribution of microglial TLR signaling to CNS pathology has been extensively investigated. Even though astrocytes assume a wide variety of key functions, information about the role of astroglial TLRs in CNS disease and injuries is limited. Because astrocytes display heterogeneity and exhibit phenotypic plasticity depending on the effectors present in the local milieu, they can exert both detrimental and beneficial effects. TLRs are modulators of these paradoxical astroglial properties. The goal of the current review is to highlight the essential roles played by astroglial TLRs in CNS infections, injuries and diseases. We discuss the contribution of astroglial TLRs to host defense as well as the dissemination of viral and bacterial infections in the CNS. We examine the link between astroglial TLRs and the pathogenesis of neurodegenerative diseases and present evidence showing the pivotal influence of astroglial TLR signaling on sterile inflammation in CNS injury. Finally, we define the research questions and areas that warrant further investigations in the context of astrocytes, TLRs, and CNS dysfunction.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Receptores Toll-Like/fisiología , Animales , Astrocitos/fisiología , Encéfalo/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/inmunología , Infecciones del Sistema Nervioso Central/patología , Encefalitis/inmunología , Humanos , Inmunidad Innata/fisiología , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Transducción de Señal , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Receptores Toll-Like/metabolismo
5.
J Neuroinflammation ; 16(1): 207, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703709

RESUMEN

BACKGROUND: Neuropathic pain is often observed in individuals with multiple sclerosis (MS) and spinal cord injury (SCI) and is not adequately alleviated by current pharmacotherapies. A better understanding of underlying mechanisms could facilitate the discovery of novel targets for therapeutic interventions. We previously reported that decreased plasma membrane calcium ATPase 2 (PMCA2) expression in the dorsal horn (DH) of healthy PMCA2+/- mice is paralleled by increased sensitivity to evoked nociceptive pain. These studies suggested that PMCA2, a calcium extrusion pump expressed in spinal cord neurons, plays a role in pain mechanisms. However, the contribution of PMCA2 to neuropathic pain processing remains undefined. The present studies investigated the role of PMCA2 in neuropathic pain processing in the DH of wild-type mice affected by experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and following SCI. METHODS: EAE was induced in female and male C57Bl/6N mice via inoculation with myelin oligodendrocyte glycoprotein fragment 35-55 (MOG35-55) emulsified in Complete Freund's Adjuvant (CFA). CFA-inoculated mice were used as controls. A severe SC contusion injury was induced at thoracic (T8) level in female C57Bl/6N mice. Pain was evaluated by the Hargreaves and von Frey filament tests. PMCA2 levels in the lumbar DH were analyzed by Western blotting. The effectors that decrease PMCA2 expression were identified in SC neuronal cultures. RESULTS: Increased pain in EAE and SCI was paralleled by a significant decrease in PMCA2 levels in the DH. In contrast, PMCA2 levels remained unaltered in the DH of mice with EAE that manifested motor deficits but not increased pain. Interleukin-1ß (IL-1ß), tumor necrosis factor α (TNFα), and IL-6 expression were robustly increased in the DH of mice with EAE manifesting pain, whereas these cytokines showed a modest increase or no change in mice with EAE in the absence of pain. Only IL-1ß decreased PMCA2 levels in pure SC neuronal cultures through direct actions. CONCLUSIONS: PMCA2 is a contributor to neuropathic pain mechanisms in the DH. A decrease in PMCA2 in DH neurons is paralleled by increased pain sensitivity, most likely through perturbations in calcium signaling. Interleukin-1ß is one of the effectors that downregulates PMCA2 by acting directly on neurons.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Neuralgia/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Percepción del Dolor/fisiología , Asta Dorsal de la Médula Espinal/metabolismo
6.
Sci Rep ; 8(1): 17260, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467368

RESUMEN

Earlier studies on genetically modified mice indicated that plasma membrane calcium ATPase 2 (PMCA2), a calcium extrusion pump, plays a novel and sex-dependent role in mechanical pain responses: female, but not male, PMCA2+/- mice manifest increased mechanical pain compared to female PMCA2+/+ mice. The goal of the present studies was to determine the contribution of ovarian steroids to the genotype- and sex-dependent manifestation of mechanical pain in PMCA2+/+ versus PMCA2+/- mice. Ovariectomy increased mechanical pain sensitivity and 17ß-estradiol (E2) replacement restored it to basal levels in PMCA2+/+ mice, but not in PMCA2+/- littermates. Intrathecal administration of an estrogen receptor alpha (ERα) agonist induced ERα signaling in the dorsal horn (DH) of female PMCA2+/+ mice, but was ineffective in PMCA2+/- mice. In male PMCA2+/+ and PMCA2+/- mice, E2 treatment following orchidectomy did not recapitulate the genotype-dependent differential pain responses observed in females and the agonist did not elicit ERα signaling. These findings establish a novel, female-specific link between PMCA2, ERα and mechanical pain. It is postulated that PMCA2 is essential for adequate ERα signaling in the female DH and that impaired ERα signaling in the female PMCA2+/- mice hinders the analgesic effects of E2 leading to increased sensitivity to mechanical stimuli.


Asunto(s)
Estradiol/administración & dosificación , Receptor alfa de Estrógeno/agonistas , Dolor/tratamiento farmacológico , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Animales , Modelos Animales de Enfermedad , Estradiol/farmacología , Femenino , Técnicas de Inactivación de Genes , Inyecciones Espinales , Masculino , Ratones , Orquiectomía/efectos adversos , Ovariectomía/efectos adversos , Dolor/etiología , Dolor/genética , Dolor/metabolismo , Umbral del Dolor , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Caracteres Sexuales , Transducción de Señal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/metabolismo
7.
Sci Rep ; 8(1): 8723, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880832

RESUMEN

Spinal cord (SC) trauma elicits pathological changes at the primary lesion and in regions distant from the injury epicenter. Therapeutic agents that target mechanisms at the injury site are likely to exert additional effects in these remote regions. We previously reported that a toll-like receptor 9 (TLR9) antagonist, oligodeoxynucleotide 2088 (ODN 2088), improves functional deficits and modulates the milieu at the epicenter in mice sustaining a mid-thoracic contusion. The present investigations use the same paradigm to assess ODN 2088-elicited alterations in the lumbar dorsal horn (LDH), a region remote from the injury site where SCI-induced molecular alterations have been well defined. We report that ODN 2088 counteracts the SCI-elicited decrease in glial glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT1) levels, whereas the levels of the neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1) and astroglial GABA transporter 3 (GAT3) were unaffected. The restoration of GLAST and GLT1 was neither paralleled by a global effect on astrocyte and microglia activation nor by changes in the expression of cytokines and growth factors reported to regulate these transporters. We conclude that the effects of intrathecal ODN 2088 treatment extend to loci beyond the epicenter by selectively targeting glial glutamate transporters.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/biosíntesis , Astrocitos/metabolismo , Microglía/metabolismo , Oligodesoxirribonucleótidos/farmacología , Asta Dorsal de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Receptor Toll-Like 9/antagonistas & inhibidores , Animales , Astrocitos/patología , Femenino , Ratones , Microglía/patología , Asta Dorsal de la Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Receptor Toll-Like 9/metabolismo
8.
Brain Behav Immun ; 56: 310-24, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27044334

RESUMEN

Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes. Neuronal TLR9 antagonism confers protection against excitotoxic death. It is likely that this neuroprotection is partly due to the attenuation of the ER stress response provoked by excitotoxicity. Although CpG ODN 2088 limits the supportive effects of astrocytes on neurons, it could potentially exert beneficial effects by decreasing the release of pro-inflammatory cytokines and chemokines by astroglia. These findings highlight the multiple roles of TLR9 in the SC and have implications for pathological conditions including SCI where excitotoxicity and neuroinflammation play a prominent role in neuronal degeneration.


Asunto(s)
Astrocitos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Médula Espinal/efectos de los fármacos , Receptor Toll-Like 9/antagonistas & inhibidores , Animales , Células Cultivadas , Nucleótidos de Citosina/farmacología , Femenino , Guanosina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligodesoxirribonucleótidos/farmacología , Embarazo
9.
J Proteome Res ; 13(5): 2433-44, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24694195

RESUMEN

mTor plays a central role in controlling protein homeostasis and cell survival. Recently, we have demonstrated that perturbations of mTor signaling are implicated in Alzheimer's disease (AD) and that mTor complex 1 (mTorC1) is involved in the formation of toxic phospho-tau. Therefore, we employed mass-spectrometry-based proteomics to identify specific protein expression changes in relation with cell survival in human neuroblastoma SH-SY5Y cells expressing genetically modified mTor. Cell death in SH-SY5Y cells was induced by moderate serum deprivation. Using flow cytometry we observed that up-regulated mTor complex 2 (mTorC2) increases the number of viable cells. By using a combination approach of proteomic and enrichment analysis we have identified several proteins (Thioredoxin-dependent peroxide reductase, Peroxiredoxin-5, Cofilin 1 (non-muscle), Annexin A5, Mortalin, and 14-3-3 protein zeta/delta) involved in mitochondrial integrity, apoptotosis, and pro-survival functions (caspase inhibitor activity and anti-apoptosis) that were significantly altered by mTor activity modulation. The major findings of this study are the implication of mTorC2 but not mTorC1 in cell viability modulation by activating the pro-survival machinery. Taken together, these results suggest that up-regulated mTorC2 might be playing an important role in promoting cell survival by suppressing the mitochondria-caspase-apoptotic pathway in vitro.


Asunto(s)
Proteínas/metabolismo , Proteómica/métodos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Espectrometría de Masas en Tándem/métodos , Apoptosis , Western Blotting , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Mitocondrias/metabolismo , Complejos Multiproteicos/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosforilación , Serina-Treonina Quinasas TOR/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...