Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Front Microbiol ; 15: 1353145, 2024.
Article En | MEDLINE | ID: mdl-38690371

Rationale: Chronic infection with Stenotrophomonas maltophilia in persons with cystic fibrosis (pwCF) has been linked to an increased risk of pulmonary exacerbations and lung function decline. We sought to establish whether baseline sputum microbiome associates with risk of S. maltophilia incident infection and persistence in pwCF. Methods: pwCF experiencing incident S. maltophilia infections attending the Calgary Adult CF Clinic from 2010-2018 were compared with S. maltophilia-negative sex, age (+/-2 years), and birth-cohort-matched controls. Infection outcomes were classified as persistent (when the pathogen was recovered in ≥50% of cultures in the subsequent year) or transient. We assessed microbial communities from prospectively biobanked sputum using V3-V4 16S ribosomal RNA (rRNA) gene sequencing, in the year preceding (Pre) (n = 57), at (At) (n = 22), and after (Post) (n = 31) incident infection. We verified relative abundance data using S. maltophilia-specific qPCR and 16S rRNA-targeted qPCR to assess bioburden. Strains were typed using pulse-field gel electrophoresis. Results: Twenty-five pwCF with incident S. maltophilia (56% female, median 29 years, median FEV1 61%) with 33 total episodes were compared with 56 uninfected pwCF controls. Demographics and clinical characteristics were similar between cohorts. Among those with incident S. maltophilia infection, sputum communities did not cluster based on infection timeline (Pre, At, Post). Communities differed between the infection cohort and controls (n = 56) based on Shannon Diversity Index (SDI, p = 0.04) and clustered based on Aitchison distance (PERMANOVA, p = 0.01) prior to infection. At the time of incident S. maltophilia isolation, communities did not differ in SDI but clustered based on Aitchison distance (PERMANOVA, p = 0.03) in those that ultimately developed persistent infection versus those that were transient. S. maltophilia abundance within sputum was increased in samples from patients (Pre) relative to controls, measuring both relative (p = 0.004) and absolute (p = 0.001). Furthermore, S. maltophilia abundance was increased in sputum at incident infection in those who ultimately developed persistent infection relative to those with transient infection, measured relatively (p = 0.04) or absolute (p = 0.04), respectively. Conclusion: Microbial community composition of CF sputum associates with S. maltophilia infection acquisition as well as infection outcome. Our study suggests sputum microbiome may serve as a surrogate for identifying infection risk and persistence risk.

2.
Stat Med ; 43(6): 1153-1169, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38221776

Wastewater-based surveillance has become an important tool for research groups and public health agencies investigating and monitoring the COVID-19 pandemic and other public health emergencies including other pathogens and drug abuse. While there is an emerging body of evidence exploring the possibility of predicting COVID-19 infections from wastewater signals, there remain significant challenges for statistical modeling. Longitudinal observations of viral copies in municipal wastewater can be influenced by noisy datasets and missing values with irregular and sparse samplings. We propose an integrative Bayesian framework to predict daily positive cases from weekly wastewater observations with missing values via functional data analysis techniques. In a unified procedure, the proposed analysis models severe acute respiratory syndrome coronavirus-2 RNA wastewater signals as a realization of a smooth process with error and combines the smooth process with COVID-19 cases to evaluate the prediction of positive cases. We demonstrate that the proposed framework can achieve these objectives with high predictive accuracies through simulated and observed real data.


COVID-19 , Humans , Bayes Theorem , COVID-19/epidemiology , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics , Wastewater
3.
Clin Microbiol Rev ; 37(1): e0010322, 2024 03 14.
Article En | MEDLINE | ID: mdl-38095438

Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring , RNA, Viral , Wastewater
4.
bioRxiv ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-37986798

Mitochondria are dynamic organelles that are morphologically and functionally diverse across cell types and subcellular compartments in order to meet unique energy demands. Mitochondrial dysfunction has been implicated in a wide variety of neurological disorders, including psychiatric disorders like schizophrenia and bipolar disorder. Despite it being well known that mitochondria are essential for synaptic transmission and synaptic plasticity, the mechanisms regulating mitochondria in support of normal synapse function are incompletely understood. The mitochondrial calcium uniporter (MCU) regulates calcium entry into the mitochondria, which in turn regulates the bioenergetics and distribution of mitochondria to active synapses. Evidence suggests that calcium influx via MCU couples neuronal activity to mitochondrial metabolism and ATP production, which would allow neurons to rapidly adapt to changing energy demands. Intriguingly, MCU is uniquely enriched in hippocampal CA2 distal dendrites relative to neighboring hippocampal CA1 or CA3 distal dendrites, however, the functional significance of this enrichment is not clear. Synapses from the entorhinal cortex layer II (ECII) onto CA2 distal dendrites readily express long term potentiation (LTP), unlike the LTP- resistant synapses from CA3 onto CA2 proximal dendrites, but the mechanisms underlying these different plasticity profiles are unknown. We hypothesized that enrichment of MCU near ECII-CA2 synapses promotes LTP in an otherwise plasticity-restricted cell type. Using a CA2-specific MCU knockout (cKO) mouse, we found that MCU is required for LTP at distal dendrite synapses but does not affect the lack of LTP at proximal dendrite synapses. Loss of LTP at ECII-CA2 synapses correlated with a trend for decreased spine density in CA2 distal dendrites of cKO mice compared to control (CTL) mice, which was predominantly seen in immature spines. Moreover, mitochondria were significantly smaller and more numerous across all dendritic layers of CA2 in cKO mice compared to CTL mice, suggesting an overall increase in mitochondrial fragmentation. Fragmented mitochondria might have functional changes, such as altered ATP production, that might explain a deficit in synaptic plasticity. Collectively, our data reveal that MCU regulates layer-specific forms of plasticity in CA2 dendrites, potentially by maintaining proper mitochondria morphology and distribution within dendrites. Differences in MCU expression across different cell types and circuits might be a general mechanism to tune the sensitivity of mitochondria to cytoplasmic calcium levels to power synaptic plasticity. MAIN TAKE HOME POINTS: The mitochondrial calcium uniporter (MCU) regulates plasticity selectively at synapses in CA2 distal dendrites.The MCU-cKO induced LTP deficit correlates with a trending reduction in spine density in CA2 distal dendrites.Loss of MCU in CA2 results in ultrastructural changes in dendritic mitochondria that suggest an increase in mitochondrial fragmentation. These ultrastructural changes could result in functional consequences, such as decreased ATP production, that could underlie the plasticity deficit.Dendritic mitochondrial fragmentation in MCU cKO occurred throughout the dendritic laminae, suggesting that MCU is dispensable for establishing layer-specific mitochondrial structural diversity.

5.
Water Res ; 244: 120469, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37634459

Wastewater-based surveillance (WBS) has been established as a powerful tool that can guide health policy at multiple levels of government. However, this approach has not been well assessed at more granular scales, including large work sites such as University campuses. Between August 2021 and April 2022, we explored the occurrence of SARS-CoV-2 RNA in wastewater using qPCR assays from multiple complimentary sewer catchments and residential buildings spanning the University of Calgary's campus and how this compared to levels from the municipal wastewater treatment plant servicing the campus. Real-time contact tracing data was used to evaluate an association between wastewater SARS-CoV-2 burden and clinically confirmed cases and to assess the potential of WBS as a tool for disease monitoring across worksites. Concentrations of wastewater SARS-CoV-2 N1 and N2 RNA varied significantly across six sampling sites - regardless of several normalization strategies - with certain catchments consistently demonstrating values 1-2 orders higher than the others. Relative to clinical cases identified in specific sewersheds, WBS provided one-week leading indicator. Additionally, our comprehensive monitoring strategy enabled an estimation of the total burden of SARS-CoV-2 for the campus per capita, which was significantly lower than the surrounding community (p≤0.001). Allele-specific qPCR assays confirmed that variants across campus were representative of the community at large, and at no time did emerging variants first debut on campus. This study demonstrates how WBS can be efficiently applied to locate hotspots of disease activity at a very granular scale, and predict disease burden across large, complex worksites.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , RNA, Viral
6.
Sci Total Environ ; 900: 165172, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37379934

Wastewater-based surveillance (WBS) of infectious diseases is a powerful tool for understanding community COVID-19 disease burden and informing public health policy. The potential of WBS for understanding COVID-19's impact in non-healthcare settings has not been explored to the same degree. Here we examined how SARS-CoV-2 measured from municipal wastewater treatment plants (WWTPs) correlates with workforce absenteeism. SARS-CoV-2 RNA N1 and N2 were quantified three times per week by RT-qPCR in samples collected at three WWTPs servicing Calgary and surrounding areas, Canada (1.4 million residents) between June 2020 and March 2022. Wastewater trends were compared to workforce absenteeism using data from the largest employer in the city (>15,000 staff). Absences were classified as being COVID-19-related, COVID-19-confirmed, and unrelated to COVID-19. Poisson regression was performed to generate a prediction model for COVID-19 absenteeism based on wastewater data. SARS-CoV-2 RNA was detected in 95.5 % (85/89) of weeks assessed. During this period 6592 COVID-19-related absences (1896 confirmed) and 4524 unrelated absences COVID-19 cases were recorded. A generalized linear regression using a Poisson distribution was performed to predict COVID-19-confirmed absences out of the total number of absent employees using wastewater data as a leading indicator (P < 0.0001). The Poisson regression with wastewater as a one-week leading signal has an Akaike information criterion (AIC) of 858, compared to a null model (excluding wastewater predictor) with an AIC of 1895. The likelihood-ratio test comparing the model with wastewater signal with the null model shows statistical significance (P < 0.0001). We also assessed the variation of predictions when the regression model was applied to new data, with the predicted values and corresponding confidence intervals closely tracking actual absenteeism data. Wastewater-based surveillance has the potential to be used by employers to anticipate workforce requirements and optimize human resource allocation in response to trackable respiratory illnesses like COVID-19.


COVID-19 , Humans , COVID-19/epidemiology , Absenteeism , Wastewater-Based Epidemiological Monitoring , SARS-CoV-2 , RNA, Viral , Wastewater
7.
Microb Genom ; 9(4)2023 04.
Article En | MEDLINE | ID: mdl-37052589

The severity and progression of lung disease are highly variable across individuals with cystic fibrosis (CF) and are imperfectly predicted by mutations in the human gene CFTR, lung microbiome variation or other clinical factors. The opportunistic pathogen Pseudomonas aeruginosa (Pa) dominates airway infections in most CF adults. Here we hypothesized that within-host genetic variation of Pa populations would be associated with lung disease severity. To quantify Pa genetic variation within CF sputum samples, we used deep amplicon sequencing (AmpliSeq) of 209 Pa genes previously associated with pathogenesis or adaptation to the CF lung. We trained machine learning models using Pa single nucleotide variants (SNVs), microbiome diversity data and clinical factors to classify lung disease severity at the time of sputum sampling, and to predict lung function decline after 5 years in a cohort of 54 adult CF patients with chronic Pa infection. Models using Pa SNVs alone classified lung disease severity with good sensitivity and specificity (area under the receiver operating characteristic curve: AUROC=0.87). Models were less predictive of lung function decline after 5 years (AUROC=0.74) but still significantly better than random. The addition of clinical data, but not sputum microbiome diversity data, yielded only modest improvements in classifying baseline lung function (AUROC=0.92) and predicting lung function decline (AUROC=0.79), suggesting that Pa AmpliSeq data account for most of the predictive value. Our work provides a proof of principle that Pa genetic variation in sputum tracks lung disease severity, moderately predicts lung function decline and could serve as a disease biomarker among CF patients with chronic Pa infections.


Cystic Fibrosis , Pseudomonas Infections , Adult , Humans , Cystic Fibrosis/complications , Pseudomonas aeruginosa/genetics , Lung , Pseudomonas Infections/etiology , Disease Progression , Nucleotides
8.
Front Microbiol ; 14: 1048661, 2023.
Article En | MEDLINE | ID: mdl-36937263

The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard" data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.

9.
J Med Virol ; 95(2): e28442, 2023 02.
Article En | MEDLINE | ID: mdl-36579780

Wastewater-based SARS-CoV-2 surveillance enables unbiased and comprehensive monitoring of defined sewersheds. We performed real-time monitoring of hospital wastewater that differentiated Delta and Omicron variants within total SARS-CoV-2-RNA, enabling correlation to COVID-19 cases from three tertiary-care facilities with >2100 inpatient beds in Calgary, Canada. RNA was extracted from hospital wastewater between August/2021 and January/2022, and SARS-CoV-2 quantified using RT-qPCR. Assays targeting R203M and R203K/G204R established the proportional abundance of Delta and Omicron, respectively. Total and variant-specific SARS-CoV-2 in wastewater was compared to data for variant specific COVID-19 hospitalizations, hospital-acquired infections, and outbreaks. Ninety-six percent (188/196) of wastewater samples were SARS-CoV-2 positive. Total SARS-CoV-2 RNA levels in wastewater increased in tandem with total prevalent cases (Delta plus Omicron). Variant-specific assessments showed this increase to be mainly driven by Omicron. Hospital-acquired cases of COVID-19 were associated with large spikes in wastewater SARS-CoV-2 and levels were significantly increased during outbreaks relative to nonoutbreak periods for total SARS-CoV2, Delta and Omicron. SARS-CoV-2 in hospital wastewater was significantly higher during the Omicron-wave irrespective of outbreaks. Wastewater-based monitoring of SARS-CoV-2 and its variants represents a novel tool for passive COVID-19 infection surveillance, case identification, containment, and potentially to mitigate viral spread in hospitals.


COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Wastewater , Tertiary Care Centers , Disease Outbreaks
10.
J Pediatric Infect Dis Soc ; 11(Supplement_2): S13-S22, 2022 Sep 07.
Article En | MEDLINE | ID: mdl-36069903

Chronic lower respiratory tract infections are a leading contributor to morbidity and mortality in persons with cystic fibrosis (pwCF). Traditional respiratory tract surveillance culturing has focused on a limited range of classic pathogens; however, comprehensive culture and culture-independent molecular approaches have demonstrated complex communities highly unique to each individual. Microbial community structure evolves through the lifetime of pwCF and is associated with baseline disease state and rates of disease progression including occurrence of pulmonary exacerbations. While molecular analysis of the airway microbiome has provided insight into these dynamics, challenges remain including discerning not only "who is there" but "what they are doing" in relation to disease progression. Moreover, the microbiome can be leveraged as a multi-modal biomarker for both disease activity and prognostication. In this article, we review our evolving understanding of the role these communities play in pwCF and identify challenges in translating microbiome data to clinical practice.


Cystic Fibrosis , Microbiota , Respiratory Tract Infections , Cystic Fibrosis/complications , Disease Progression , Humans , Lung
11.
Emerg Infect Dis ; 28(9): 1770-1776, 2022 09.
Article En | MEDLINE | ID: mdl-35867051

Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.


COVID-19 , SARS-CoV-2 , Alberta/epidemiology , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , Wastewater
12.
Water Res ; 220: 118611, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35661506

Wastewater-based epidemiology (WBE) is an emerging surveillance tool that has been used to monitor the ongoing COVID-19 pandemic by tracking SARS-CoV-2 RNA shed into wastewater. WBE was performed to monitor the occurrence and spread of SARS-CoV-2 from three wastewater treatment plants (WWTP) and six neighborhoods in the city of Calgary, Canada (population 1.44 million). A total of 222 WWTP and 192 neighborhood samples were collected from June 2020 to May 2021, encompassing the end of the first-wave (June 2020), the second-wave (November end to December 2020) and the third-wave of the COVID-19 pandemic (mid-April to May 2021). Flow-weighted 24-hour composite samples were processed to extract RNA that was then analyzed for two SARS-CoV-2-specific regions of the nucleocapsid gene, N1 and N2, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using this approach SARS-CoV-2 RNA was detected in 98.06% (406/414) of wastewater samples. SARS-CoV-2 RNA abundance was compared to clinically diagnosed COVID-19 cases organized by the three-digit postal code of affected individuals' primary residences, enabling correlation analysis at neighborhood, WWTP and city-wide scales. Strong correlations were observed between N1 & N2 gene signals in wastewater and new daily cases for WWTPs and neighborhoods. Similarly, when flow rates at Calgary's three WWTPs were used to normalize observed concentrations of SARS-CoV-2 RNA and combine them into a city-wide signal, this was strongly correlated with regionally diagnosed COVID-19 cases and clinical test percent positivity rate. Linked census data demonstrated disproportionate SARS-CoV-2 in wastewater from areas of the city with lower socioeconomic status and more racialized communities. WBE across a range of urban scales was demonstrated to be an effective mechanism of COVID-19 surveillance.


COVID-19 , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Urban Population , Wastewater
13.
Water Res ; 201: 117369, 2021 Aug 01.
Article En | MEDLINE | ID: mdl-34229222

SARS-CoV-2 has been detected in wastewater and its abundance correlated with community COVID-19 cases, hospitalizations and deaths. We sought to use wastewater-based detection of SARS-CoV-2 to assess the epidemiology of SARS-CoV-2 in hospitals. Between August and December 2020, twice-weekly wastewater samples from three tertiary-care hospitals (totaling > 2100 dedicated inpatient beds) were collected. Hospital-1 and Hospital-2 could be captured with a single sampling point whereas Hospital-3 required three separate monitoring sites. Wastewater samples were concentrated and cleaned using the 4S-silica column method and assessed for SARS-CoV-2 gene-targets (N1, N2 and E) and controls using RT-qPCR. Wastewater SARS-CoV-2 as measured by quantification cycle (Cq), genome copies and genomes normalized to the fecal biomarker PMMoV were compared to the total daily number of patients hospitalized with active COVID-19, confirmed cases of hospital-acquired infection, and the occurrence of unit-specific outbreaks. Of 165 wastewater samples collected, 159 (96%) were assayable. The N1-gene from SARS-CoV-2 was detected in 64.1% of samples, N2 in 49.7% and E in 10%. N1 and N2 in wastewater increased over time both in terms of the amount of detectable virus and the proportion of samples that were positive, consistent with increasing hospitalizations at those sites with single monitoring points (Pearson's r = 0.679, P < 0.0001, Pearson's r = 0.799, P < 0.0001, respectively). Despite increasing hospitalizations through the study period, nosocomial-acquired cases of COVID-19 (Pearson's r = 0.389, P < 0.001) and unit-specific outbreaks were discernable with significant increases in detectable SARS-CoV-2 N1-RNA (median 112 copies/ml) versus outbreak-free periods (0 copies/ml; P < 0.0001). Wastewater-based monitoring of SARS-CoV-2 represents a promising tool for SARS-CoV-2 passive surveillance and case identification, containment, and mitigation in acute- care medical facilities.


COVID-19 , SARS-CoV-2 , Disease Outbreaks , Humans , Tertiary Care Centers , Viral Load , Wastewater
14.
BMC Microbiol ; 21(1): 96, 2021 03 30.
Article En | MEDLINE | ID: mdl-33784986

BACKGROUND: Azithromycin is commonly prescribed drug for individuals with cystic fibrosis (CF), with demonstrated benefits in reducing lung function decline, exacerbation occurrence and improving nutrition. As azithromycin has antimicrobial activity against components of the uncultured microbiome and increasingly the CF microbiome is implicated in disease pathogenesis - we postulated azithromycin may act through its manipulation. Herein we sought to determine if the CF microbiome changed following azithromycin use and if clinical benefit observed during azithromycin use associated with baseline community structure. RESULTS: Drawing from a prospectively collected biobank we identified patients with sputum samples prior to, during and after initiating azithromycin and determined the composition of the CF microbial community by sequencing the V3-V4 region of the 16S rRNA gene. We categorized patients as responders if their rate of lung function decline improved after azithromycin initiation. Thirty-eight adults comprised our cohort, nine who had not utilized azithromycin in at least 3 years, and 29 who were completely naïve. We did not observe a major impact in the microbial community structure of CF sputum in the 2 years following azithromycin usage in either alpha or beta-diversity metrics. Seventeen patients (45%) were classified as Responders - demonstrating reduced lung function decline after azithromycin. Responders who were naïve to azithromycin had a modest clustering effect distinguishing them from those who were non-Responders, and had communities enriched with several organisms including Stenotrophomonas, but not Pseudomonas. CONCLUSIONS: Azithromycin treatment did not associate with subsequent large changes in the CF microbiome structure. However, we found that baseline community structure associated with subsequent azithromycin response in CF adults.


Azithromycin/pharmacology , Cystic Fibrosis/microbiology , Microbiota/drug effects , Adult , Anti-Bacterial Agents , Female , Humans , Male , RNA, Ribosomal, 16S/genetics , Sputum
15.
Thorax ; 75(12): 1058-1064, 2020 12.
Article En | MEDLINE | ID: mdl-33139451

BACKGROUND: Inhaled tobramycin powder/solution (TIP/S) use has resulted in improved clinical outcomes in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa. However, TIP/S effect on the CF sputum microbiome has not been explored. We hypothesised that TIP/S has additional 'off-target' effects beyond merely P. aeruginosa and that baseline microbiome prior to initiation of therapy is associated with subsequent patient response. METHODS: We drew sputum samples from a prospectively collected biobank. Patients were included if they had one sputum sample in the 18 months before and after TIP/S. Bacterial 16S rRNA gene profiling was used to characterise the sputum microbiome. RESULTS: Forty-one patients met our inclusion criteria and 151 sputum samples were assessed. At baseline, median age was 30.4 years (IQR 24.2-35.2) and forced expiratory volume in 1 (FEV1) second was 57% predicted (IQR 44-74). Nineteen patients were defined a priori as responders having no net decrease in FEV1 in the year following TIP/S. No significant changes were observed in key microbiome metrics of alpha (within-sample) or beta (between-sample) diversity for samples collected before and after TIP/S. However, significant beta-diversity (Bray-Curtis) differences were noted at baseline between patients based on response status. Notably, responders were observed to have a higher abundance of Staphylococcus in pretherapy baseline samples. CONCLUSIONS: Our longitudinal study demonstrates that the sputum microbiome of patients with CF is relatively stable following inhaled tobramycin over many months. Intriguingly, our findings suggest that baseline microbiome may associate with patient response to TIP/S-suggesting the sputum microbiome could be used to personalise therapy.


Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/drug therapy , Microbiota/drug effects , Sputum/microbiology , Tobramycin/pharmacology , Administration, Inhalation , Adult , Anti-Bacterial Agents/administration & dosage , Cystic Fibrosis/physiopathology , Female , Forced Expiratory Volume , Humans , Longitudinal Studies , Male , Powders , Pseudomonas/drug effects , Solutions , Staphylococcus/drug effects , Tobramycin/administration & dosage , Treatment Outcome , Young Adult
16.
Article En | MEDLINE | ID: mdl-32426295

Pseudomonas aeruginosa is the archetypal cystic fibrosis (CF) pathogen. However, the clinical course experienced by infected individuals varies markedly. Understanding these differences is imperative if further improvements in outcomes are to be achieved. Multiple studies have found that patients infected with epidemic P. aeruginosa (ePA) strains may have a worse clinical prognosis than those infected with unique, non-clonal strains. Additionally, the traditionally uncultured CF lung bacterial community (i.e., CF microbiome) may further influence the outcome. We sought to identify if these two important variables, not identified through routine culture, associate and together may contribute to disease pathogenesis. Patients were classified as being infected with Prairie Epidemic ePA (PES) or a non-clonal strain, unique PA strains (uPA), through a retrospective assessment of a comprehensive strain biobank using a combination of PFGE and PES-specific PCR. Patients were matched to age, sex, time-period controls and sputum samples from equivalent time periods were identified from a sputum biobank. Bacterial 16S rRNA gene profiling and Pseudomonas qPCR was used to characterize the respiratory microbiome. We identified 31 patients infected with PES and matched them with uPA controls. Patients infected with PES at baseline have lower microbial diversity (P = 0.02) and higher P. aeruginosa relative abundance (P < 0.005). Microbial community structure was found to cluster by PA strain type, although it was not the main determinant of community structure as additional factors were also found to be drivers of CF community structure. Communities from PES infected individuals were enriched with Pseudomonas, Streptococcus and Prevotella OTUs. The disproportionate disease experienced by ePA infected CF patients may be mediated through a combination of pathogen-pathogen factors as opposed to strictly enhanced virulence of infecting P. aeruginosa strains.


Cystic Fibrosis , Epidemics , Microbiota , Pseudomonas Infections , Cystic Fibrosis/complications , Humans , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/genetics , RNA, Ribosomal, 16S/genetics , Retrospective Studies , Sputum
17.
J Cyst Fibros ; 18(6): 829-837, 2019 11.
Article En | MEDLINE | ID: mdl-30857926

BACKGROUND: To improve clinical outcomes, cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa infections are prescribed inhaled anti-pseudomonal antibiotics. Although, a diverse microbial community exists within CF airways, little is known about how the CF microbiota influences patient outcomes. We hypothesized that organisms within the CF microbiota are affected by inhaled-antibiotics and baseline microbiome may be used to predict therapeutic response. METHODS: Adults with chronic P. aeruginosa infection from four clinics were observed during a single 28-day on/off inhaled-aztreonam cycle. Patients performed serial sputum collection, CF-respiratory infection symptom scores (CRISS), and spirometry. Patients achieving a decrease of ≥2 CRISS by day 28 were categorized as subjective responders (SR). The airway microbiome was defined by Illumina MiSeq analysis of the 16S rRNA gene. RESULTS: Thirty-seven patients (median 37.4 years and FEV1 44% predicted) were enrolled. No significant cohort-wide changes in the microbiome were observed between on/off AZLI cycles in either alpha- or beta-diversity metrics. However, at an individual level shifts were apparent. Twenty-one patients (57%) were SR and fourteen patients did not subjectively respond. While alpha-diversity metrics did not associate with response, patients who did not subjectively respond had a higher abundance of Staphylococcus and Streptococcus, and lower abundance of Haemophilus. CONCLUSIONS: The CF microbiome is relatively resilient to AZLI perturbations. However, associated changes were observed at the individual patient level. The relative abundance of key "off-target" organisms associated with subjective improvements suggesting that the microbiome may be used as a tool to predict patient response - potentially improving outcomes.


Aztreonam/administration & dosage , Cystic Fibrosis , Diagnostic Self Evaluation , Lung , Microbiota/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa , Administration, Inhalation , Adult , Anti-Bacterial Agents/administration & dosage , Cystic Fibrosis/drug therapy , Cystic Fibrosis/physiopathology , Cystic Fibrosis/psychology , Cystic Fibrosis/therapy , Female , Humans , Lung/microbiology , Lung/physiopathology , Male , Outcome Assessment, Health Care/methods , Patient Outcome Assessment , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Respiratory Function Tests , Sputum/microbiology
18.
Thorax ; 73(11): 1016-1025, 2018 11.
Article En | MEDLINE | ID: mdl-30135091

BACKGROUND: Complex polymicrobial communities infect cystic fibrosis (CF) lower airways. Generally, communities with low diversity, dominated by classical CF pathogens, associate with worsened patient status at sample collection. However, it is not known if the microbiome can predict future outcomes. We sought to determine if the microbiome could be adapted as a biomarker for patient prognostication. METHODS: We retrospectively assessed prospectively collected sputum from a cohort of 104 individuals aged 18-22 to determine factors associated with progression to early end-stage lung disease (eESLD; death/transplantation <25 years) and rapid pulmonary function decline (>-3%/year FEV1 over the ensuing 5 years). Illumina MiSeq paired-end sequencing of the V3-V4 region of the 16S rRNA was used to define the airway microbiome. RESULTS: Based on the primary outcome analysed, 17 individuals (16%) subsequently progressed to eESLD. They were more likely to have sputum with low alpha diversity, dominated by specific pathogens including Pseudomonas. Communities with abundant Streptococcus were observed to be protective. Microbial communities clustered together by baseline lung disease stage and subsequent progression to eESLD. Multivariable analysis identified baseline lung function and alpha diversity as independent predictors of eESLD. For the secondary outcomes, 58 and 47 patients were classified as rapid progressors based on absolute and relative definitions of lung function decline, respectively. Patients with low alpha diversity were similarly more likely to be classified as experiencing rapid lung function decline over the ensuing 5 years when adjusted for baseline lung function. CONCLUSIONS: We observed that the diversity of microbial communities in CF airways is predictive of progression to eESLD and disproportionate lung function decline and may therefore represent a novel biomarker.


Cystic Fibrosis/complications , Microbiota , Respiratory Tract Infections/microbiology , Sputum/microbiology , Adolescent , Cystic Fibrosis/microbiology , Disease Progression , Female , Follow-Up Studies , Humans , Male , Prognosis , Respiratory Tract Infections/complications , Respiratory Tract Infections/diagnosis , Retrospective Studies , Time Factors , Young Adult
19.
Microbiome ; 5(1): 51, 2017 05 05.
Article En | MEDLINE | ID: mdl-28476135

BACKGROUND: Aztreonam lysine for inhalation (AZLI) is an inhaled antibiotic used to treat chronic Pseudomonas aeruginosa infection in CF. AZLI improves lung function and quality of life, and reduces exacerbations-improvements attributed to its antipseudomonal activity. Given the extremely high aztreonam concentrations achieved in the lower airways by nebulization, we speculate this may extend its spectrum of activity to other organisms. As such, we sought to determine if AZLI affects the CF lung microbiome and whether community constituents can be used to predict treatment responsiveness. METHODS: Patients were included if they had chronic P. aeruginosa infection and repeated sputum samples collected before and after AZLI. Sputum DNA was extracted, and the V3-hypervariable region of the 16S ribosomal RNA (rRNA) gene amplified and sequenced. RESULTS: Twenty-four patients naïve to AZLI contributed 162 samples. The cohort had a median age of 37.1 years, and a  median FEV1 of 44% predicted. Fourteen patients were a priori defined as responders for achieving ≥3% FEV1 improvement following initiation. No significant changes in alpha diversity were noted following AZLI. Furthermore, beta diversity demonstrated clustering with respect to patients, but had no association with AZLI use. However, we did observe a decline in the relative abundance of several individual operational taxonomic units (OTUs) following AZLI initiation suggesting that specific sub-populations of organisms may be impacted. Patients with higher abundance of Staphylococcus and anaerobic organisms including Prevotella and Fusobacterium were less likely to respond to therapy. CONCLUSIONS: Results from our study suggest potential alternate/additional mechanisms by which AZLI functions. Moreover, our study suggests that the CF microbiota may be used as a biomarker to predict patient responsiveness to therapy suggesting the microbiome may be harnessed for the personalization of therapies.


Anti-Bacterial Agents/administration & dosage , Aztreonam/administration & dosage , Cystic Fibrosis/drug therapy , Lung/microbiology , Microbiota/drug effects , Pseudomonas Infections/drug therapy , Administration, Inhalation , Adult , Anti-Bacterial Agents/pharmacology , Aztreonam/pharmacology , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Cystic Fibrosis/microbiology , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Humans , Lung/drug effects , Male , Middle Aged , Pseudomonas aeruginosa/drug effects , Quality of Life , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Treatment Outcome
20.
Ann Am Thorac Soc ; 14(8): 1288-1297, 2017 Aug.
Article En | MEDLINE | ID: mdl-28541746

RATIONALE: The cystic fibrosis (CF) airways are infected with a diverse polymicrobial community. OBJECTIVES: Understanding how changes in the CF microbiome have occurred over time, similar to the observed changes in the prevalence of cultured pathogens, is key in understanding the microbiome's role in disease. METHODS: Drawing from a prospectively collected and maintained sputum biobank, we identified 45 patients with sputum samples collected between the ages of 18 and 21 years in three successive cohorts of adults transitioning to our CF clinic: A (1997-2000), B (2004-2007), and C (2010-2013). Patient demographics, clinical status, and medications were collected from detailed chart review. Microbial communities were assessed by Ilumina MiSeq sequencing of the variable 3 (V3) region of the 16S rDNA. RESULTS: The three cohorts were similar with respect to baseline demographics. There was a trend toward improved health and use of disease-modifying therapies in each successive cohort. Shannon diversity increased in the most recent cohort, suggesting an increase in the diversity of organisms between cohorts. Furthermore, the proportion of samples with Pseudomonas-dominated communities decreased over time, whereas Streptococcus increased. Although ß-diversity was associated with transition cohort, the greatest predictor of diversity remained lung function. Furthermore, core microbiome constituents were preserved across cohorts. CONCLUSIONS: Modest changes in the composition and structure of the microbiome of three successive cohorts of young adults with CF were observed, occurring in parallel with successive improvements in clinical status. Importantly, however, the core microbiome constituents were preserved across cohorts.


Bacterial Infections/complications , Cystic Fibrosis/complications , Lung/microbiology , Microbiota , Adolescent , Biomarkers , Canada , Cystic Fibrosis/microbiology , Female , Humans , Linear Models , Lung/physiopathology , Male , Prospective Studies , Pseudomonas , RNA, Ribosomal, 16S/analysis , Sputum/microbiology , Streptococcus , Young Adult
...