Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37588000

RESUMEN

The magnetic ground state of the pyrochlore Yb2GaSbO7 has remained an enigma for nearly a decade. The persistent spin fluctuations observed by muon spin relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb2GaSbO7 to elucidate the central physics at play. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb2GaSbO7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. This state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field µ0Hc∼1.5T.

2.
Phys Rev Lett ; 123(2): 027201, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386489

RESUMEN

The quantum dimer magnet (QDM) is the canonical example of quantum magnetism. The QDM state consists of entangled nearest-neighbor spin dimers and often exhibits a field-induced triplon Bose-Einstein condensate (BEC) phase. We report on a new QDM in the strongly spin-orbit coupled, distorted honeycomb-lattice material Yb_{2}Si_{2}O_{7}. Our single crystal neutron scattering, specific heat, and ultrasound velocity measurements reveal a gapped singlet ground state at zero field with sharp, dispersive excitations. We find a field-induced magnetically ordered phase reminiscent of a BEC phase, with exceptionally low critical fields of H_{c1}∼0.4 and H_{c2}∼1.4 T. Using inelastic neutron scattering in an applied magnetic field we observe a Goldstone mode (gapless to within δE=0.037 meV) that persists throughout the entire field-induced magnetically ordered phase, suggestive of the spontaneous breaking of U(1) symmetry expected for a triplon BEC. However, in contrast to other well-known cases of this phase, the high-field (µ_{0}H≥1.2 T) part of the phase diagram in Yb_{2}Si_{2}O_{7} is interrupted by an unusual regime signaled by a change in the field dependence of the ultrasound velocity and magnetization, as well as the disappearance of a sharp anomaly in the specific heat. These measurements raise the question of how anisotropy in strongly spin-orbit coupled materials modifies the field induced phases of QDMs.

3.
Phys Rev Lett ; 119(23): 237203, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29286699

RESUMEN

The insulating honeycomb magnet α-RuCl_{3} exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T=0, fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir^{3+} substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru_{1-x}Ir_{x}Cl_{3} show that the magnetic ordering temperature is suppressed with increasing x, and evidence of zizag magnetic order is absent for x>0.3. Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the full range of x investigated. The depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl_{3}.

4.
J Phys Condens Matter ; 29(45): 45LT01, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29049030

RESUMEN

Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids (Dirac 1931 Proc. R. Soc. A 133 60). Despite decades of searching, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials (Castelnovo et al 2008 Nature 326 411). Here we report the detection of a hierarchy of unequally-spaced magnetic excitations via high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate [Formula: see text] [Formula: see text] [Formula: see text]. These excitations are well-described by a simple model of monopole pairs bound by a linear potential (Coldea et al Science 327 177) with an effective tension of 0.642(8) K [Formula: see text] at 1.65 K. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate [Formula: see text] [Formula: see text] [Formula: see text].

5.
Nat Mater ; 15(7): 733-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27043779

RESUMEN

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.


Asunto(s)
Campos Magnéticos , Imanes , Modelos Químicos , Teoría Cuántica , Soluciones/química , Marcadores de Spin , Frío , Simulación por Computador , Dosis de Radiación
6.
Rev Sci Instrum ; 87(12): 125109, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28040949

RESUMEN

We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities.

7.
Phys Rev Lett ; 112(11): 117603, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702418

RESUMEN

We find evidence for long-range and short-range (ζ=70 Å at 4 K) incommensurate magnetic order on the quasi-face-centered-cubic (fcc) lattices of the monoclinic double perovskites La2NaRuO6 and La2NaOsO6, respectively. Incommensurate magnetic order on the fcc lattice has not been predicted by mean field theory, but may arise via a delicate balance of inequivalent nearest neighbor and next nearest neighbor exchange interactions. In the Ru system with long-range order, inelastic neutron scattering also reveals a spin gap Δ âˆ¼ 2.75 meV. Magnetic anisotropy is generally minimized in the more familiar octahedrally coordinated 3d3 systems, so the large gap observed for La2NaRuO6 may result from the significantly enhanced value of spin-orbit coupling in this 4d(3) material.

8.
Nat Commun ; 3: 1124, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23047682

RESUMEN

The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use uranium nitride as a fuel.


Asunto(s)
Nitrógeno/química , Compuestos de Uranio/química , Vibración
9.
Nat Mater ; 11(4): 323-8, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22344326

RESUMEN

High-T(c) cuprates, iron pnictides, organic BEDT and TMTSF, alkali-doped C(60), and heavy-fermion systems have superconducting states adjacent to competing states exhibiting static antiferromagnetic or spin density wave order. This feature has promoted pictures for their superconducting pairing mediated by spin fluctuations. Sr(2)RuO(4) is another unconventional superconductor which almost certainly has a p-wave pairing. The absence of known signatures of static magnetism in the Sr-rich side of the (Ca, Sr) substitution space, however, has led to a prevailing view that the superconducting state in Sr(2)RuO(4) emerges from a surrounding Fermi-liquid metallic state. Using muon spin relaxation and magnetic susceptibility measurements, we demonstrate here that (Sr,Ca)(2)RuO(4) has a ground state with static magnetic order over nearly the entire range of (Ca, Sr) substitution, with spin-glass behaviour in Sr(1.5)Ca(0.5)RuO(4) and Ca(1.5)Sr(0.5)RuO(4). The resulting new magnetic phase diagram establishes the proximity of superconductivity in Sr(2)RuO(4) to competing static magnetic order.

10.
Phys Rev Lett ; 107(20): 207207, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22181768

RESUMEN

Theory predicts the low temperature magnetic excitations in spin ices consist of deconfined magnetic charges, or monopoles. A recent transverse-field (TF) muon spin rotation (µSR) experiment [S. T. Bramwell et al., Nature (London) 461, 956 (2009)] reports results claiming to be consistent with the temperature and magnetic field dependence anticipated for monopole nucleation-the so-called second Wien effect. We demonstrate via a new series of µSR experiments in Dy(2)Ti(2)O(7) that such an effect is not observable in a TF µSR experiment. Rather, as found in many highly frustrated magnetic materials, we observe spin fluctuations which become temperature independent at low temperatures, behavior which dominates over any possible signature of thermally nucleated monopole excitations.

11.
Nat Commun ; 2: 422, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21829184

RESUMEN

In a prototypical ferromagnet (Ga,Mn)As based on a III-V semiconductor, substitution of divalent Mn atoms into trivalent Ga sites leads to severely limited chemical solubility and metastable specimens available only as thin films. The doping of hole carriers via (Ga,Mn) substitution also prohibits electron doping. To overcome these difficulties, Masek et al. theoretically proposed systems based on a I-II-V semiconductor LiZnAs, where isovalent (Zn,Mn) substitution is decoupled from carrier doping with excess/deficient Li concentrations. Here we show successful synthesis of Li(1+y)(Zn(1-x)Mn(x))As in bulk materials. Ferromagnetism with a critical temperature of up to 50 K is observed in nominally Li-excess (y=0.05-0.2) compounds with Mn concentrations of x=0.02-0.15, which have p-type metallic carriers. This is presumably due to excess Li in substitutional Zn sites. Semiconducting LiZnAs, ferromagnetic Li(Zn,Mn)As, antiferromagnetic LiMnAs, and superconducting LiFeAs systems share square lattice As layers, which may enable development of novel junction devices in the future.

12.
Phys Rev Lett ; 105(10): 107203, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20867545

RESUMEN

LiHo(x)Y(1-x)F4 is an insulator where the magnetic Ho3+ ions have an Ising character and interact mainly through magnetic dipolar fields. We used the muon spin relaxation technique to study the nature of its ground state for samples with x ≤ 0.25. In contrast with some previous works, we did not find canonical spin glass behavior down to ≈ 15 mK. Instead, below ≈300 mK we observed temperature-independent dynamic magnetism characterized by a single correlation time. The 300 mK energy scale corresponds to the Ho3+ hyperfine interaction strength, suggesting that this interaction may be involved in the dynamic behavior of the system.

13.
Phys Rev Lett ; 103(20): 207203, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-20366007

RESUMEN

Single crystals of the spin dimer system Sr(3)Cr(2)O(8) have been grown for the first time. Magnetization, heat capacity, and magnetocaloric effect data up to 65 T reveal magnetic order between applied fields of H(c1) approximately 30.4 T and H(c2) approximately 62 T. This field-induced order persists up to T(c)(max) approximately 8 K at H approximately 44 T, the highest observed in any quantum magnet where H(c2) is experimentally accessible. We fit the temperature-field phase diagram boundary close to H(c1) using the expression T(c) = A(H-H(c1))(nu). The exponent nu = 0.65(2), obtained at temperatures much smaller than T(c)(max), is that of the 3D Bose-Einstein condensate (BEC) universality class. This finding strongly suggests that Sr(3)Cr(2)O(8) is a new realization of a triplon BEC where the universal regimes corresponding to both H(c1) and H(c2) are accessible at (4)He temperatures.

14.
Phys Rev Lett ; 101(1): 017001, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18764143

RESUMEN

We have performed zero-field muon-spin-relaxation measurements on single crystals of La(2-x)SrxCuO4 to search for spontaneous currents in the pseudogap state. By comparing measurements on materials across the phase diagram, we put strict upper limits on any possible time-reversal symmetry breaking fields that could be associated with the pseudogap. Comparison between experimental limits and the proposed circulating current states effectively eliminates the possibility that such states exist in this family of materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA