Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Zool Stud ; 62: e49, 2023.
Article En | MEDLINE | ID: mdl-37965300

The hydrozoan family Eirenidae is known scientifically for its morphological plasticity and challenges in species identification. We used an integrative taxonomic approach based on morphological, molecular and life history evidence to systematically assess field-collected medusae of Eirene menoni Kramp 1953 and captive raised polyps of both E. menoni and E. lacteoides Kubota and Horita 1992. Following morphological review, we updated the genus description to include the presence of rudimentary bulbs (warts) on the ring canal in at least eight of the 24 valid Eirene species. We propose the potential for the mature E. menoni hydrotheca to develop into a gonotheca. However, this proposal will require additional study for verification. We provide validated distribution records from the Indo-Pacific Ocean for E. menoni,and updated collection records for E. lacteoides from the Yellow and East China Seas, and public aquaria-cultured specimens from Japan and Hawaii, using cytochrome c oxidase I (COI) sequences that we generated and compared with those from GenBank. The COI gene reliably separated four species, each forming a monophyletic clade with strong bootstrap support and low mean intraspecific molecular divergences (≤ 1%) within clades. However, some of the deeper nodes of the tree remained poorly resolved, and our analysis failed to demonstrate monophyly among eirenid genera Eirene and Tima. Our integrative taxonomic approach is essential in confirming species identity within the family Eirenidae and genus Eirene,and we have also identified a likely range expansion of E. lacteoides to Hawaii.

2.
Zoolog Sci ; 38(4): 370-382, 2021 Aug.
Article En | MEDLINE | ID: mdl-34342958

Tima nigroannulata sp. nov. is described from medusae collected in shallow waters of four prefectures on the Pacific coast of Japan (Miyagi, Fukushima, Kanagawa, and Miyazaki), as well as from cultures maintained at two aquaria (Enoshima Aquarium, Kanagawa Prefecture; Tsuruoka City Kamo Aquarium, Yamagata Prefecture). Adult medusae differ from those of other known species of the genus Tima Eschscholtz, 1829 in the following combination of characters: (1) umbrella usually hemispherical or higher, (2) marginal tentacles up to 50 or more in number; and (3) black pigment granules form a ring around the umbrella rim, and sometimes extend onto the tentacles and radial canals. Their hydroids, from aquarium cultures, have stolonal colonies with pedicels of varied length, vestigial hydrothecae, slender and vase- to club-shaped hydranths, and a whorl of about 20 filiform tentacles with an intertentacular web basally. Medusa buds develop singly within gonothecae that arise from the hydrothecal pedicels. The cnidomes of both hydroid and medusa stages comprise heteronemes, provisionally identified as microbasic mastigophores. Medusae of T. nigroannulata are confirmed as a unique, cohesive lineage by comparing mtDNA COI sequence fragments with those from two congeners, resulting in three well-supported reciprocally monophyletic clades, one representing each species. Records of the western Atlantic medusa Tima formosa L. Agassiz, 1862 from Japan overlap those of T. nigroannulata, and are believed to have been based on the new species described herein.


Hydrozoa/anatomy & histology , Hydrozoa/classification , Animals , Hydrozoa/genetics , Japan , Phylogeny , Species Specificity
3.
J Chem Phys ; 146(10): 105102, 2017 Mar 14.
Article En | MEDLINE | ID: mdl-28298096

Modification of the water hydrogen bond network imposed by disaccharides is known to serve as a bioprotective agent in living organisms, though its comprehensive understanding is still yet to be reached. In this study, aiming to characterize the dynamical slowing down and destructuring effect of disaccharides, we performed broadband dielectric spectroscopy, ranging from 0.5 GHz to 12 THz, of sucrose and trehalose aqueous solutions. The destructuring effect was examined in two ways (the hydrogen bond fragmentation and disordering) and our result showed that both sucrose and trehalose exhibit an obvious destructuring effect with a similar strength, by fragmenting hydrogen bonds and distorting the tetrahedral-like structure of water. This observation strongly supports a chaotropic (structure-breaking) aspect of disaccharides on the water structure. At the same time, hydration water was found to exhibit slower dynamics and a greater reorientational cooperativity than bulk water because of the strengthened hydrogen bonds. These results lead to the conclusion that strong disaccharide-water hydrogen bonds structurally incompatible with native water-water bonds lead to the rigid but destructured hydrogen bond network around disaccharides. Another important finding in this study is that the greater dynamical slowing down of trehalose was found compared with that of sucrose, at variance with the destructuring effect where no solute dependent difference was observed. This discovery suggests that the exceptionally greater bioprotective impact especially of trehalose among disaccharides is mainly associated with the dynamical slowing down (rather than the destructuring effect).


Microwaves , Sucrose/chemistry , Terahertz Spectroscopy , Trehalose/chemistry , Water/chemistry , Hydrogen Bonding
4.
Evol Dev ; 17(4): 231-9, 2015.
Article En | MEDLINE | ID: mdl-26174099

Both sexes of the Japanese giant box jellyfish Morbakka virulenta were collected from the Seto Inland Sea, western Japan in December 2011, in order to observe the developmental processes from polyps to medusae. The medusa production in M. virulenta is up to now a unique process in cubozoans in that it exhibits a form of monodisc strobilation where the polyp is regenerated before the medusa detaches. This mode of medusa production was previously thought to be exclusive to scyphozoans. The general shape of young medusae resembles that of other cubozoans such as Alatina moseri and Copula sivickisi, but is differentiated from these by the short capitate tentacles and the lack of gastric filaments in the stomach. The unique medusa production of M. virulenta highly implies a phylogenetic similarity between cubozoans and scyphozoans.


Biological Evolution , Cubozoa/growth & development , Phylogeny , Scyphozoa/growth & development , Animals , Female , Japan , Male
...