Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 375(6582): eabg1780, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175823

RESUMEN

Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal "movement ecology" (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data on movements of animals in the wild. These high-throughput wildlife tracking systems now allow more thorough investigation of variation among individuals and species across space and time, the nature of biological interactions, and behavioral responses to the environment. Movement ecology is rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks, providing improved opportunities for conservation and insights into the movements of wild animals, and their causes and consequences.


Asunto(s)
Animales Salvajes/fisiología , Conducta Animal , Macrodatos , Ecología , Ambiente , Movimiento , Migración Animal , Animales , Recolección de Datos , Ecosistema , Análisis Espacio-Temporal
2.
Ecol Evol ; 11(21): 14932-14949, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765151

RESUMEN

Fine-scale movement patterns are driven by both biotic (hunting, physiological needs) and abiotic (environmental conditions) factors. The energy balance governs all movement-related strategic decisions.Marine environments can be better understood by considering the vertical component. From 24 acoustic trackings of 10 white sharks in Guadalupe Island, this study linked, for the first time, horizontal and vertical movement data and inferred six different behavioral states along with movement states, through the use of hidden Markov models, which allowed to draw a comprehensive picture of white shark behavior.Traveling was the most frequent state of behavior for white sharks, carried out mainly at night and twilight. In contrast, area-restricted searching was the least used, occurring primarily in daylight hours.Time of day, distance to shore, total shark length, and, to a lesser extent, tide phase affected behavioral states. Chumming activity reversed, in the short term and in a nonpermanent way, the behavioral pattern to a general diel vertical pattern.

4.
Sci Rep ; 11(1): 14323, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253749

RESUMEN

Tracking studies of juveniles are rare compared to those of adults, and consequently little is known about the influence of intrinsic and extrinsic factors on activity during this critical life stage. We used hourly GPS data, collected from 66 Antarctic fur seal pups from birth until moulting, to investigate the explanatory power of multiple individual-based and environmental variables on activity levels. Pups were sampled from two nearby breeding colonies of contrasting density during two subsequent years, and a two-state hidden Markov model was used to identify modalities in their movement behaviour, specifically 'active' and 'inactive' states. We found that movement was typified by central place exploration, with active movement away from and subsequent return to a location of inactivity. The probability of such directed exploration was unaffected by several factors known to influence marine mammal movement including sex, body condition, and temperature. Compared to pups born at the high-density colony, pups at low-density were more active, increased their activity with age, and transitioned earlier into the tussock grass, which offers protection from predators and extreme weather. Our study illustrates the importance of extrinsic factors, such as colony of birth, to early-life activity patterns and highlights the adaptive potential of movement.


Asunto(s)
Lobos Marinos/fisiología , Animales , Cadenas de Markov , Temperatura
5.
Mov Ecol ; 9(1): 40, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321114

RESUMEN

Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...