Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29685964

RESUMEN

We explored the association of metal levels with subclinical atherosclerosis and epigenetic changes in relevant biological pathways. Whole blood DNA Infinium Methylation 450 K data were obtained from 23 of 73 middle age men without clinically evident cardiovascular disease (CVD) who participated in the Aragon Workers Health Study in 2009 (baseline visit) and had available baseline urinary metals and subclinical atherosclerosis measures obtained in 2010-2013 (follow-up visit). The median metal levels were 7.36 µg g-1, 0.33 µg g-1, 0.11 µg g-1 and 0.07 µg g-1, for arsenic (sum of inorganic and methylated species), cadmium, antimony and tungsten, respectively. Urine cadmium and tungsten were associated with femoral and carotid intima-media thickness, respectively (Pearson's r = 0.27; p = 0.03 in both cases). Among nearest genes to identified differentially methylated regions (DMRs), 46% of metal-DMR genes overlapped with atherosclerosis-DMR genes (p < 0.001). Pathway enrichment analysis of atherosclerosis-DMR genes showed a role in inflammatory, metabolic and transport pathways. In in silico protein-to-protein interaction networks among proteins encoded by 162 and 108 genes attributed to atherosclerosis- and metal-DMRs, respectively, with proteins known to have a role in atherosclerosis pathways, we observed hub proteins in the network associated with both atherosclerosis and metal-DMRs (e.g. SMAD3 and NOP56), and also hub proteins associated with metal-DMRs only but with relevant connections with atherosclerosis effectors (e.g. SSTR5, HDAC4, AP2A2, CXCL12 and SSTR4). Our integrative in silico analysis demonstrates the feasibility of identifying epigenomic regions linked to environmental exposures and potentially involved in relevant pathways for human diseases. While our results support the hypothesis that metal exposures can influence health due to epigenetic changes, larger studies are needed to confirm our pilot results.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.


Asunto(s)
Aterosclerosis/orina , Epigénesis Genética , Metales/orina , Enfermedades Asintomáticas , Aterosclerosis/inducido químicamente , Simulación por Computador , Metilación de ADN , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Proyectos Piloto , España
2.
BMJ Open ; 7(11): e017875, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29146643

RESUMEN

OBJECTIVES: To investigate the association between IL18RAP and body mass index (BMI) and obesity and to verify the effect of a polymorphism in the microRNA136 (MIR136) IL18RAP binding region. DESIGN: We analysed samples from two Spanish cross-sectional studies, VALCAR (Spanish Mediterranean coast) and Hortega (Spanish centre). These studies aimed at analysing cardiovascular risk and development of cardiovascular disease in the general population. Both populations correspond to regions with different characteristics. SETTING: Five IL18RAP single nucleotide polymorphisms were selected using the SYSNPs web tool and analysed by oligonucleotide ligation assay (SNPlex). For the MIR136 functional study, cells were transfected with plasmids containing different rs7559479 polymorphism alleles and analysed by luciferase reporter assays. PARTICIPANTS: 1970 individuals (Caucasian, both genders): VALCAR (468) and Hortega (1502). RESULTS: rs2293225, rs2272127 and rs7559479 showed the following associations: rs7559479 G allele correlated with a higher obesity risk (P=0.01; OR=1.82; 95% CI 1.15 to 2.87 for the VALCAR group; P=0.033; OR=1.35; 95% CI 1.03 to 1.79 for the Hortega population) and higher body mass index (BMI) values (P=0.0045; P=0.1 for VALCAR and Hortega, respectively); a significant association with obesity (P=0.0024, OR=1.44, 95% CI 1.14 to 1.82) and increased BMI values (P=0.008) was found when considering both populations together. rs2293225 T allele was associated with lower obesity risk (P=0.036; OR=0.60; 95% CI 0.35 to 0.96) and lower BMI values (P=0.0038; OR=1.41) while the rs2272127 G allele was associated with lower obesity risk (P=0.028; OR=0.66; 95% CI 0.44 to 0.97) only in the VALCAR population. A reporter assay showed that the presence of the A allele in rs7559479 was associated with increased MIR136 binding to IL18RAP. CONCLUSIONS: Our results suggest that polymorphisms in IL18RAP influence susceptibility to obesity. We demonstrated that the A allele in rs7559479 increases MIR136 binding, which regulates IL-18 system activity.


Asunto(s)
Índice de Masa Corporal , Subunidad beta del Receptor de Interleucina-18/genética , MicroARNs/genética , Obesidad/genética , Adulto , Anciano , Alelos , Estudios Transversales , Femenino , Predisposición Genética a la Enfermedad , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , España , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA