Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Med Genet ; 61(6): 586-589, 2024 May 21.
Article En | MEDLINE | ID: mdl-38350721

Pogo transposable element-derived protein with ZNF domain (POGZ) gene encodes a chromatin regulator and rare variants on this gene have been associated with a broad spectrum of neurodevelopmental disorders, such as White-Sutton syndrome. Patient clinical manifestations frequently include developmental delay, autism spectrum disorder and obesity. Sleep disturbances are also commonly observed in these patients, yet the biological pathways which link sleep traits to the POGZ-associated syndrome remain unclear. We screened for sleep implications among individuals with causative POGZ variants previously described. Sleep disturbances were observed in 52% of patients, and being obese was not observed as a risk factor for sleep problems. Next, we identified genes associated with sleep-associated traits among the POGZ regulatory targets, aiming to uncover the molecular pathways that, when disrupted by POGZ loss of function, contribute to the aetiology of sleep phenotypes in these patients. The intersect between POGZ targets and sleep-related genes was used in a pathway enrichment analysis. Relevant pathways among these overlapping genes are involved in the regulation of circadian rhythm, tau protein binding, ATPase activator activity. This study may represent the beginning for novel functional investigations on shared molecular mechanisms between sleep disturbances and rare developmental syndromes related to POGZ and its regulatory targets.


Neurodevelopmental Disorders , Phenotype , Sleep Wake Disorders , Humans , Neurodevelopmental Disorders/genetics , Sleep Wake Disorders/genetics , Male , Female , Sleep/genetics , Child , Child, Preschool , Circadian Rhythm/genetics , DNA-Binding Proteins , Cell Cycle Proteins
3.
J Neurosci Res ; 101(7): 1058-1067, 2023 07.
Article En | MEDLINE | ID: mdl-36791049

Sleep-related phenotypes have been frequently reported in early on-set epileptic encephalopathies and in developmental delay syndromes, in particular in syndromes related to autism spectrum disorder. Yet the convergent pathogenetic mechanisms between these comorbidities are largely unknown. We first performed a gene enrichment study that identified shared risk genes among rare epileptic encephalopathies/neurodevelopmental disorders, rare developmental delay genetic syndromes and sleep disturbances. We then determined cellular and molecular pathways enriched among genes shared between sleep phenotypes and those two early onset mental illnesses, aiming to identify genetic disparities and commonalities among these phenotypic groups. The sleep gene set was observed as significantly overlapped with the two gene lists associated to rare genetic syndromes (i.e., epileptic encephalopathies/neurodevelopmental disorders and developmental delay gene sets), suggesting shared genetic contribution. Similarities across significantly enriched pathways between the two intersect lists comprehended mostly synapse-related pathways, such as retrograde endocannabinoid signaling, serotonergic, and GABAergic synapse. Network analysis indicates epileptic encephalopathies/neurodevelopmental disorders versus sleep-specific clusters and developmental delay versus sleep-specific clusters related to synaptic and transcriptional regulation, respectively. Longstanding functional patterns previously described in epileptic encephalopathies and neurodevelopmental disorders genetic architecture were recaptured after dissecting the overlap between the genes associated to those developmental phenotypes and sleep disturbances, suggesting that during neurodevelopment different molecular and functional mechanisms are related to alterations on circadian rhythm. The overlapping gene set and biological pathways highlighted by this study may serve as a primer for new functional investigations of shared molecular mechanisms between sleep disturbances and rare developmental syndromes.


Autism Spectrum Disorder , Brain Diseases , Sleep Wake Disorders , Humans , Syndrome , Autism Spectrum Disorder/genetics , Phenotype , Sleep Wake Disorders/genetics , Sleep/genetics
4.
F S Sci ; 4(1): 11-20, 2023 02.
Article En | MEDLINE | ID: mdl-36565949

OBJECTIVE: To evaluate the effect of chronic sleep deprivation on sperm function quality in mice. DESIGN: Experimental study. SETTING: Not applicable. ANIMALS: Spermatozoa from twenty-four 10-week-old C57BL/6J male mice. INTERVENTION(S): The sleep deprivation group underwent gentle handling for 6 hours for 5 consecutive days. The mice in the sleep recovery group were allowed to sleep during the 24-hour period after the sleep deprivation protocol. MAIN OUTCOME MEASURE(S): After euthanasia, the spermatozoa were collected for analysis. Sperm motility was evaluated using computer-assisted sperm analyzer. Intracellular superoxide anion (O2-) activity, acrosome integrity, mitochondrial activity, and DNA fragmentation assays were conducted afterward. RESULT(S): Sleep deprivation and sleep recovery groups presented a lower percentage of spermatozoa with an intact acrosome, compared with the respective control groups. Regarding DNA fragmentation, a decreased proportion of spermatozoa with Comet I class intact DNA was observed in the sleep recovery group, compared with the recovery control group. Beat cross frequency was increased in the sleep recovery group. CONCLUSION(S): Sleep deprivation can reduce sperm quality, impairing acrosome integrity. Sleep recovery decreased DNA integrity and increased beat cross frequency.


Sleep Deprivation , Sperm Motility , Male , Animals , Mice , Mice, Inbred C57BL , Semen , Spermatozoa
5.
Andrologia ; 52(2): e13497, 2020 Mar.
Article En | MEDLINE | ID: mdl-31793048

The aim of this article was to evaluate the effects of different concentrations of carnosine added during human semen processing. Semen samples from 34 patients were submitted to processing by discontinuous density gradient centrifugation without (control) or with different concentrations of carnosine supplementation as follows: (a) 20 mM of carnosine supplementation on the layers of Percoll; and (b) 50 mM carnosine supplementation. Sperm samples were then washed with human tubal fluid medium and evaluated according to sperm kinetics and functional assessment. For statistical analysis, data were evaluated by a general linear model or a Friedman test, whenever appropriate. The 50 mM carnosine supplementation led to improved sperm mitochondrial activity when compared to untreated samples. Motility variables, such as percentage of motile and progressively motile spermatozoa, average path velocity, straight line velocity, curvilinear velocity and linearity, showed an improvement after semen processing irrespective of carnosine supplementation. Both concentrations of carnosine increased the beat-cross frequency (BCF) when compared to samples before processing. We conclude that carnosine supplementation in semen samples benefits sperm mitochondrial activity and BCF.


Carnosine/pharmacology , Spermatozoa/drug effects , Adult , DNA Fragmentation/drug effects , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Middle Aged , Prospective Studies , Semen Analysis , Sperm Motility/drug effects , Spermatozoa/metabolism , Superoxides/metabolism , Young Adult
...