Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(10): 4431-4438, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37129264

RESUMEN

We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce a large Rabi splitting of ∼200 meV and more than 50-fold enhancement of the polaritonic emission compared to the intrinsic excitonic emission of the perovskite film. Moreover, the directionality of polaritonic electroluminescence can be dynamically tuned by varying the source-drain bias, which induces an asymmetric distribution of exciton population within the transistor channel. We argue that this approach provides a new platform to study strong light-matter interactions in dispersion engineered photonic cavities under electrical injection and paves the way to solution-processed electrically pumped polariton lasers.

2.
Chem Rev ; 123(8): 4416-4442, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36943013

RESUMEN

Confinement of electromagnetic fields at the subwavelength scale via metamaterial paradigms is an established method to engineer light-matter interaction in most common material systems, from insulators to semiconductors and from metals to superconductors. In recent years, this approach has been extended to the realm of topological materials, providing a new avenue to access nontrivial features of their electronic band structure. In this review, we survey various topological material classes from a photonics standpoint, including crystal growth and lithographic structuring methods. We discuss how exotic electronic features such as spin-selective Dirac plasmon polaritons in topological insulators or hyperbolic plasmon polaritons in Weyl semimetals may give rise to unconventional magneto-optic, nonlinear, and circular photogalvanic effects in metamaterials across the visible to infrared spectrum. Finally, we dwell on how these effects may be dynamically controlled by applying external perturbations in the form of electric and magnetic fields or ultrafast optical pulses. Through these examples and future perspectives, we argue that topological insulator, semimetal and superconductor metamaterials are unique systems to bridge the missing links between nanophotonic, electronic, and spintronic technologies.

3.
Nat Commun ; 14(1): 1433, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918559

RESUMEN

Various topological laser concepts have recently enabled the demonstration of robust light-emitting devices that are immune to structural deformations and tolerant to fabrication imperfections. Current realizations of photonic cavities with topological boundaries are often limited by outcoupling issues or poor directionality and require complex design and fabrication that hinder operation at small wavelengths. Here we propose a topological cavity design based on interface states between two one-dimensional photonic crystals with distinct Zak phases. Using a few monolayers of solution-processed all-inorganic cesium lead halide perovskite quantum dots as the ultrathin gain medium, we demonstrate a lithography-free, vertical-emitting, low-threshold, and single-mode laser emitting in the green. We show that the topological laser, akin to vertical-cavity surface-emitting lasers (VCSELs), is robust against local perturbations of the multilayer structure. We argue that the design simplicity and reduction of the gain medium thickness enabled by the topological cavity make this architecture suitable for low-cost and efficient quantum dot vertical emitting lasers operating across the visible spectral region.

4.
Adv Mater ; 35(1): e2207317, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308036

RESUMEN

Emerging immersive visual communication technologies require light sources with complex functionality for dynamic control of polarization, directivity, wavefront, spectrum, and intensity of light. Currently, this is mostly achieved by free space bulk optic elements, limiting the adoption of these technologies. Flat optics based on artificially structured metasurfaces that operate at the sub-wavelength scale are a viable solution, however, their integration into electrically driven devices remains challenging. Here, a radically new approach to monolithic integration of a dielectric metasurface into a perovskite light-emitting transistor is demonstrated. It is shown that nanogratings directly structured on top of the transistor channel yield an 8-fold increase of electroluminescence intensity and dynamic tunability of polarization. This new light-emitting metatransistor device concept opens unlimited opportunities for light management strategies based on metasurface design and integration.

5.
Adv Mater ; 35(1): e2207430, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36321337

RESUMEN

Metasurfaces supporting optical bound states in the continuum (BICs) are emerging as simple and compact optical cavities to realize polarization-vortex lasers. The winding of the polarization around the singularity defines topological charges which are generally set by the cavity design and cannot be altered without changing geometrical parameters. Here, a subwavelength-thin phase-change halide perovskite BIC metasurface functioning as a tunable polarization vortex microlaser is demonstrated. Upon the perovskite structural phase transitions, both its refractive index and gain vary substantially, inducing reversible and bistable switching between distinct polarization vortexes underpinned by opposite topological charges. Dynamic tuning and switching of the resulting vector beams may find use in microscopy imaging, particle trapping and manipulation, and optical data storage.

6.
ACS Omega ; 7(47): 42674-42680, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36467911

RESUMEN

Organic semiconductors have shown great potential as efficient bioelectronic materials. Specifically, photovoltaic polymers such as the workhorse poly(thiophene) derivatives, when stimulated with visible light, can depolarize neurons and generate action potentials, an effect that has been also employed for rescuing vision in blind rats. In this context, however, the coupling of such materials with optically resonant structures to enhance those photodriven biological effects is still in its infancy. Here, we employ the optical coupling between a nanostructured metasurface and poly(3-hexylthiophene) (P3HT) to improve the bioelectronic effects occurring upon photostimulation at the abiotic-biotic interface. In particular, we designed a spectrally tuned aluminum metasurface that can resonate with P3HT, hence augmenting the effective field experienced by the polymer. In turn, this leads to an 8-fold increase in invoked inward current in cells. This enhanced activation strategy could be useful to increase the effectiveness of P3HT-based prosthetic implants for degenerative retinal disorders.

7.
Nano Lett ; 22(15): 6306-6312, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35913802

RESUMEN

Resonance fluorescence from a quantum emitter is an ideal source to extract indistinguishable photons. By using the cross-polarization to suppress the laser scattering, we observed resonance fluorescence from GeV color centers in diamond at cryogenic temperature. The Fourier-transform-limited line width emission with T2/2T1 ∼ 0.86 allows for two-photon interference based on single GeV color center. Under pulsed excitation, the separated photons exhibit a Hong-Ou-Mandel quantum interference above classical limit, whereas the continuous-wave excitation leads to a coalescence time window of 1.05 radiative lifetime. In addition, we demonstrated a single-shot readout of spin states with a fidelity of 74%. Our experiments lay down the foundation for building a quantum network with GeV color centers in diamond.

8.
Nat Commun ; 13(1): 1551, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322031

RESUMEN

Recent attempts to synthesize hybrid perovskites with large chirality have been hampered by large size mismatch and weak interaction between their structure and the wavelength of light. Here we adopt a planar nanostructure design to overcome these limitations and realize all-dielectric perovskite metasurfaces with giant superstructural chirality. We identify a direct spectral correspondence between the near- and the far- field chirality, and tune the electric and magnetic multipole moments of the resonant chiral metamolecules to obtain large anisotropy factor of 0.49 and circular dichroism of 6350 mdeg. Simulations show that larger area metasurfaces could yield even higher optical activity, approaching the theoretical limits. Our results clearly demonstrate the advantages of nanostructrure engineering for the implementation of perovskite chiral photonic, optoelectronic, and spintronic devices.

9.
Adv Mater ; 34(12): e2109157, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35045198

RESUMEN

The Rashba effect, i.e., the splitting of electronic spin-polarized bands in the momentum space of a crystal with broken inversion symmetry, has enabled the realization of spin-orbitronic devices, in which spins are manipulated by spin-orbit coupling. In optics, where the helicity of light polarization represents the spin degree of freedom for spin-momentum coupling, the optical Rashba effect is manifested by the splitting of optical states with opposite chirality in the momentum space. Previous realizations of the optical Rashba effect relied on passive devices determining the surface plasmon or light propagation inside nanostructures, or the directional emission of chiral luminescence when hybridized with light-emitting media. An active device underpinned by the optical Rashba effect is demonstrated here, in which a monolithic halide perovskite metasurface emits highly directional chiral photoluminescence. An all-dielectric metasurface design with broken in-plane inversion symmetry is directly embossed into the high-refractive-index, light-emitting perovskite film, yielding a degree of circular polarization of photoluminescence of 60% at room temperature.

10.
Nat Commun ; 12(1): 3150, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035297

RESUMEN

Super-resolution imaging has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as biological tissues that scramble light paths, create speckle patterns and hinder object's visualization, let alone super-resolution imaging. Here, we demonstrate non-invasive super-resolution imaging through scattering media based on a stochastic optical scattering localization imaging (SOSLI) technique. After capturing multiple speckle patterns of photo-switchable point sources, our computational approach utilizes the speckle correlation property of scattering media to retrieve an image with a 100-nm resolution, an eight-fold enhancement compared to the diffraction limit. More importantly, we demonstrate our SOSLI to do non-invasive super-resolution imaging through not only static scattering media, but also dynamic scattering media with strong decorrelation such as biological tissues. Our approach paves the way to non-invasively visualize various samples behind scattering media at nanometer levels of detail.


Asunto(s)
Dispersión Dinámica de Luz/métodos , Imagen Óptica/métodos , Procesos Estocásticos
11.
Nano Lett ; 20(11): 7906-7911, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33090800

RESUMEN

Metal-halide perovskites are rapidly emerging as solution-processable optical materials for light-emitting applications. Here, we adopt a plasmonic metamaterial approach to enhance photoluminescence emission and extraction of methylammonium lead iodide (MAPbI3) thin films based on the Purcell effect. We show that hybridization of the active metal-halide film with resonant nanoscale sized slits carved into a gold film can yield more than 1 order of magnitude enhancement of luminescence intensity and nearly 3-fold reduction of luminescence lifetime corresponding to a Purcell enhancement factor of more than 300. These results show the effectiveness of resonant nanostructures in controlling metal-halide perovskite light emission properties over a tunable spectral range, a viable approach toward highly efficient perovskite light-emitting devices and single-photon emitters.

12.
Nano Lett ; 20(11): 7964-7972, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33054225

RESUMEN

Optical wavefront engineering has been rapidly developing in fundamentals from phase accumulation in the optical path to the electromagnetic resonances of confined nanomodes in optical metasurfaces. However, the amplitude modulation of light has limited approaches that usually originate from the ohmic loss and absorptive dissipation of materials. Here, an atomically thin photon-sieve platform made of MoS2 multilayers is demonstrated for high-quality optical nanodevices, assisted fundamentally by strong excitonic resonances at the band-nesting region of MoS2. The atomic thin MoS2 significantly facilitates high transmission of the sieved photons and high-fidelity nanofabrication. A proof-of-concept two-dimensional (2D) nanosieve hologram exhibits 10-fold enhanced efficiency compared with its non-2D counterparts. Furthermore, a supercritical 2D lens with its focal spot breaking diffraction limit is developed to exhibit experimentally far-field label-free aberrationless imaging with a resolution of ∼0.44λ at λ = 450 nm in air. This transition-metal-dichalcogenide (TMDC) photonic platform opens new opportunities toward future 2D meta-optics and nanophotonics.

13.
Opt Lett ; 45(10): 2740-2743, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32412455

RESUMEN

Coherent optical fiber networks are extremely sensitive to thermal, mechanical, and acoustic noise, which requires elaborate schemes of phase stabilization with dedicated auxiliary lasers, multiplexers, and photodetectors. This is particularly demanding in quantum networks operating at the single-photon level. Here, we propose a simple method of phase stabilization based on single-photon counting and apply it to quantum fiber networks implementing single-photon interference on a lossless beamsplitter and coherent perfect absorption on a metamaterial absorber. As a proof of principle, we show dissipative single-photon switching with visibility close to 80%. This method can be employed in quantum networks of greater complexity without classical stabilization rigs, potentially increasing efficiency of the quantum channels.

14.
ACS Appl Mater Interfaces ; 11(17): 15756-15763, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969116

RESUMEN

Achieving controllable coherent and incoherent light sources is crucial to meet the requests of the constantly developing integrated optics, which, however, remains challenging for the existing semiconductor materials and techniques. All-inorganic lead halide perovskites (ILHPs) are emerging as the promising semiconductors, featuring the defect-tolerant nature and tunable band gap. Herein, an experimental design, based on the interaction between ILHPs and energetic ions, for achieving controllable light emitters and microlasers is reported. We reveal that the photoluminescence intensity from ILHPs can be modulated by more than 1 order of magnitude upon low-dose gallium ion (∼1015 ions/cm2) irradiation, which can be attributed to the generation of vacancy/interstitial defects, metallic lead, and crystal-to-amorphization transition. Such ion-dependent light emission can be exploited to make the colorful photopatterns and in situ tailor the lasing behavior from CsPbBr3 microplates. Further, a strong sputtering effect is observed with the increase of the ion dose (∼1017 ions/cm2), which enables the top-down fabrication of microlasers based on ILHPs. These findings represent a significant step toward controllable light sources leveraging on perovskite-ion interactions.

15.
Sci Adv ; 4(3): eaar3580, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29670945

RESUMEN

On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies.

16.
Sci Adv ; 4(2): eaao4223, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29423444

RESUMEN

Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules, or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. We perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P3/2) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its nonresonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited-state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step toward atom trapping in the extreme near field, possibly without the use of external fields.

17.
Adv Mater ; 29(9)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28054390

RESUMEN

Organometallic perovskites, solution-processable materials with outstanding optoelectronic properties and high index of refraction, provide a platform for all-dielectric metamaterials operating at visible frequencies. Perovskite metasurfaces with structural coloring tunable across visible frequencies are realized through subwavelength structuring. Moreover, a threefold increase of the luminescence yield and comparable reduction of luminescence decay time are observed.

18.
Nano Lett ; 16(5): 3137-41, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27018806

RESUMEN

We report on reflection spectra of cesium atoms in close vicinity of a nanostructured metallic meta-surface. We show that the hyperfine sub-Doppler spectrum of the 6(2)S1/2-6(2)P3/2 resonance transition at 852 nm is strongly affected by the coupling to the plasmonic resonance of the nanostructure. Fine tuning of dispersion and positions of the atomic lines in the near-field of plasmonic metamaterials could have uses and implications for atom-based metrology, sensing, and the development of atom-on-a-chip devices.

19.
Nano Lett ; 15(8): 5382-7, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26168373

RESUMEN

We propose and demonstrate a novel type of coupling between polarons in a conjugated polymer and localized surface plasmons in infrared (IR) nanoantennas. The near-field interaction between plasmons and polarons is revealed by polarized photoinduced absorption measurements, probing mid-IR polaron transitions, and infrared-active vibrational modes of the polymer, which directly gauge the density of photogenerated charge carriers. This work proves the possibility of tuning the polaronic properties of organic semiconductors with plasmonic nanostructures.

20.
Nat Commun ; 5: 5139, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25295413

RESUMEN

The development of metamaterials, data processing circuits and sensors for the visible and ultraviolet parts of the spectrum is hampered by the lack of low-loss media supporting plasmonic excitations. This has driven the intense search for plasmonic materials beyond noble metals. Here we show that the semiconductor Bi1.5Sb0.5Te1.8Se1.2, also known as a topological insulator, is also a good plasmonic material in the blue-ultraviolet range, in addition to the already-investigated terahertz frequency range. Metamaterials fabricated from Bi1.5Sb0.5Te1.8Se1.2 show plasmonic resonances from 350 to 550 nm, while surface gratings exhibit cathodoluminescent peaks from 230 to 1,050 nm. The observed plasmonic response is attributed to the combination of bulk charge carriers from interband transitions and surface charge carriers of the topological insulator. The importance of our result is in the identification of new mechanisms of negative permittivity in semiconductors where visible range plasmonics can be directly integrated with electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...