Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Lancet Diabetes Endocrinol ; 3(7): 526-534, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26095709

RESUMEN

BACKGROUND: Indian Asians, who make up a quarter of the world's population, are at high risk of developing type 2 diabetes. We investigated whether DNA methylation is associated with future type 2 diabetes incidence in Indian Asians and whether differences in methylation patterns between Indian Asians and Europeans are associated with, and could be used to predict, differences in the magnitude of risk of developing type 2 diabetes. METHODS: We did a nested case-control study of DNA methylation in Indian Asians and Europeans with incident type 2 diabetes who were identified from the 8-year follow-up of 25 372 participants in the London Life Sciences Prospective Population (LOLIPOP) study. Patients were recruited between May 1, 2002, and Sept 12, 2008. We did epigenome-wide association analysis using samples from Indian Asians with incident type 2 diabetes and age-matched and sex-matched Indian Asian controls, followed by replication testing of top-ranking signals in Europeans. For both discovery and replication, DNA methylation was measured in the baseline blood sample, which was collected before the onset of type 2 diabetes. Epigenome-wide significance was set at p<1 × 10(-7). We compared methylation levels between Indian Asian and European controls without type 2 diabetes at baseline to estimate the potential contribution of DNA methylation to increased risk of future type 2 diabetes incidence among Indian Asians. FINDINGS: 1608 (11·9%) of 13 535 Indian Asians and 306 (4·3%) of 7066 Europeans developed type 2 diabetes over a mean of 8·5 years (SD 1·8) of follow-up. The age-adjusted and sex-adjusted incidence of type 2 diabetes was 3·1 times (95% CI 2·8-3·6; p<0·0001) higher among Indian Asians than among Europeans, and remained 2·5 times (2·1-2·9; p<0·0001) higher after adjustment for adiposity, physical activity, family history of type 2 diabetes, and baseline glycaemic measures. The mean absolute difference in methylation level between type 2 diabetes cases and controls ranged from 0·5% (SD 0·1) to 1·1% (0·2). Methylation markers at five loci were associated with future type 2 diabetes incidence; the relative risk per 1% increase in methylation was 1·09 (95% CI 1·07-1·11; p=1·3 × 10(-17)) for ABCG1, 0·94 (0·92-0·95; p=4·2 × 10(-11)) for PHOSPHO1, 0·94 (0·92-0·96; p=1·4 × 10(-9)) for SOCS3, 1·07 (1·04-1·09; p=2·1 × 10(-10)) for SREBF1, and 0·92 (0·90-0·94; p=1·2 × 10(-17)) for TXNIP. A methylation score combining results for the five loci was associated with future type 2 diabetes incidence (relative risk quartile 4 vs quartile 1 3·51, 95% CI 2·79-4·42; p=1·3 × 10(-26)), and was independent of established risk factors. Methylation score was higher among Indian Asians than Europeans (p=1 × 10(-34)). INTERPRETATION: DNA methylation might provide new insights into the pathways underlying type 2 diabetes and offer new opportunities for risk stratification and prevention of type 2 diabetes among Indian Asians. FUNDING: The European Union, the UK National Institute for Health Research, the Wellcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/genética , Pueblo Asiatico , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Epigénesis Genética , Femenino , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Población Blanca
2.
PLoS Genet ; 10(12): e1004813, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474312

RESUMEN

Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes.


Asunto(s)
Enfermedades Cardiovasculares/genética , Metilación de ADN , Genoma , Miocardio/metabolismo , Animales , Secuencia de Bases , Enfermedades Cardiovasculares/patología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Polimorfismo de Nucleótido Simple , Ratas , Ratas Endogámicas BN , Ratas Endogámicas SHR , Análisis de Secuencia de ADN/métodos
4.
Aging (Albany NY) ; 4(12): 966-77, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23425860

RESUMEN

Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated to human heart attack patients.


Asunto(s)
Infarto del Miocardio/fisiopatología , Miocardio/patología , Regeneración , Remodelación Ventricular , Factores de Edad , Animales , Animales Recién Nacidos , Caspasa 3/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Proliferación Celular , Modelos Animales de Enfermedad , Activación Enzimática , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Regeneración/genética , Factores de Tiempo , Ultrasonografía , Remodelación Ventricular/genética
5.
Acta Neuropathol ; 123(5): 711-25, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22109108

RESUMEN

Epigenetic alterations, including methylation, have been shown to be an important mechanism of gene silencing in cancer. Ependymoma has been well characterized at the DNA copy number and mRNA expression levels. However little is known about DNA methylation changes. To gain a more global view of the methylation profile of ependymoma we conducted an array-based analysis. Our data demonstrated tumors to segregate according to their location in the CNS, which was associated with a difference in the global level of methylation. Supratentorial and spinal tumors displayed significantly more hypermethylated genes than posterior fossa tumors, similar to the 'CpG island methylator phenotype' (CIMP) identified in glioma and colon carcinoma. This hypermethylated profile was associated with an increase in expression of genes encoding for proteins involved in methylating DNA, suggesting an underlying mechanism. An integrated analysis of methylation and mRNA expression array data allowed us to identify methylation-induced expression changes. Most notably genes involved in the control of cell growth and death and the immune system were identified, including members of the JNK pathway and PPARG. In conclusion, we have generated a global view of the methylation profile of ependymoma. The data suggests epigenetic silencing of tumor suppressor genes is an important mechanism in the pathogenesis of supratentorial and spinal, but not posterior fossa ependymomas. Hypermethylation correlated with a decrease in expression of a number of tumor suppressor genes and pathways that could be playing an important role in tumor pathogenesis.


Asunto(s)
Ependimoma/genética , Ependimoma/fisiopatología , Regulación Neoplásica de la Expresión Génica/fisiología , Genes Supresores de Tumor/fisiología , Neoplasias de la Columna Vertebral/fisiopatología , Neoplasias Supratentoriales/fisiopatología , Apoptosis/fisiología , Proliferación Celular , Niño , Análisis por Conglomerados , Estudios de Cohortes , Metilación de ADN/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Transducción de Señal/genética , Neoplasias de la Columna Vertebral/genética , Estadística como Asunto , Neoplasias Supratentoriales/genética
6.
Neuro Oncol ; 13(8): 866-79, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21798848

RESUMEN

Central nervous system primitive neuroectodermal tumor (CNS PNET) and pineoblastoma are highly malignant embryonal brain tumors with poor prognoses. Current therapies are based on the treatment of pediatric medulloblastoma, even though these tumors are distinct at both the anatomical and molecular level. CNS PNET and pineoblastoma have a worse clinical outcome than medulloblastoma; thus, improved therapies based on an understanding of the underlying biology of CNS PNET and pineoblastoma are needed. To this end, we characterized the genomic alterations of 36 pediatric CNS PNETs and 8 pineoblastomas using Affymetrix single nucleotide polymorphism arrays. Overall, the majority of CNS PNETs contained a greater degree of genomic imbalance than pineoblastomas, with gain of 19p (8 [27.6%] of 29), 2p (7 [24.1%] of 29), and 1q (6 [20.7%] of 29) common events in primary CNS PNETs. Novel gene copy number alterations were identified and corroborated by Genomic Identification of Significant Targets In Cancer (GISTIC) analysis: gain of PCDHGA3, 5q31.3 in 62.1% of primary CNS PNETs and all primary pineoblastomas and FAM129A, 1q25 in 55.2% of primary CNS PNETs and 50% of primary pineoblastomas. Comparison of our GISTIC data with publically available data for medulloblastoma confirmed these CNS PNET-specific copy number alterations. With use of the collection of 5 primary and recurrent CNS PNET pairs, we found that gain of 2p21 was maintained at relapse in 80% of cases. Novel gene copy number losses included OR4C12, 11p11.12 in 48.2% of primary CNS PNETs and 50% of primary pineoblastomas. Loss of CDKN2A/B (9p21.3) was identified in 14% of primary CNS PNETs and was significantly associated with older age among children (P = .05). CADPS, 3p14.2 was lost in 27.6% of primary CNS PNETs and was associated with poor prognosis (P = .043). This genome-wide analysis revealed the marked molecular heterogeneity of CNS PNETs and enabled the identification of novel genes and clinical associations potentially involved in the pathogenesis of these tumors.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Genoma Humano , Recurrencia Local de Neoplasia/genética , Tumores Neuroectodérmicos Primitivos/genética , Pinealoma/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas de Unión al Calcio/genética , Niño , Preescolar , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , ADN de Neoplasias/análisis , ADN de Neoplasias/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Técnicas para Inmunoenzimas , Lactante , Masculino , Recurrencia Local de Neoplasia/metabolismo , Tumores Neuroectodérmicos Primitivos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Glándula Pineal/metabolismo , Glándula Pineal/patología , Pinealoma/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas de Transporte Vesicular/genética
7.
Neuro Oncol ; 13(2): 212-22, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21138945

RESUMEN

Overall, pediatric high-grade glioma (pHGG) has a poor prognosis, in part due to the lack of understanding of the underlying biology. High-resolution 244 K oligo array comparative genomic hybridization (CGH) was used to analyze DNA from 38 formalin-fixed paraffin-embedded predominantly pretreatment pHGG samples, including 13 diffuse intrinsic pontine gliomas (DIPGs). The patterns of gains and losses were distinct from those seen in HGG arising in adults. In particular, we found 1q gain in up to 27% of our cohort compared with 9% reported in adults. A total of 13% had a balanced genetic profile with no large-scale copy number alterations. Homozygous loss at 8p12 was seen in 6 of 38 (16%) cases of pHGG. This novel deletion, which includes the ADAM3A gene, was confirmed by quantitative real-time PCR (qPCR). Loss of CDKN2A/CDKN2B in 4 of 38 (10%) samples by oligo array CGH was confirmed by fluorescent in situ hybridization on tissue microarrays and was restricted to supratentorial tumors. Only ∼50% of supratentorial tumors were positive for CDKN2B expression by immunohistochemistry (IHC), while ∼75% of infratentorial tumors were positive for CDKN2B expression (P = 0.03). Amplification of the 4q11-13 region was detected in 8% of cases and included PDGFRA and KIT, and subsequent qPCR analysis was consistent with the amplification of PDGFRA. MYCN amplification was seen in 5% of samples being significantly associated with anaplastic astrocytomas (P= 0.03). Overall, DIPG shared similar spectrum of changes to supratentorial HGG with some notable differences, including high-frequency loss of 17p and 14q and lack of CDKN2A/CDKN2B deletion. Informative genetic data providing insight into the underlying biology and potential therapeutic possibilities can be generated from archival tissue and typically small biopsies from DIPG. Our findings highlight the importance of obtaining pretreatment samples.


Asunto(s)
Proteínas ADAM/genética , Neoplasias del Tronco Encefálico/genética , Glioma/genética , Pérdida de Heterocigocidad , Proteínas ADAM/metabolismo , Adolescente , Adulto , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias del Tronco Encefálico/metabolismo , Neoplasias del Tronco Encefálico/patología , Niño , Preescolar , Deleción Cromosómica , Mapeo Cromosómico , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 17/genética , Hibridación Genómica Comparativa , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , ADN de Neoplasias/genética , Femenino , Amplificación de Genes , Glioma/metabolismo , Glioma/patología , Homocigoto , Humanos , Técnicas para Inmunoenzimas , Hibridación Fluorescente in Situ , Lactante , Masculino , Proteína Proto-Oncogénica N-Myc , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Reacción en Cadena de la Polimerasa , Pronóstico , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Neoplasias Supratentoriales/genética , Neoplasias Supratentoriales/metabolismo , Neoplasias Supratentoriales/patología , Tasa de Supervivencia , Adulto Joven
8.
J Clin Oncol ; 28(18): 3061-8, 2010 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-20479398

RESUMEN

PURPOSE: To define copy number alterations and gene expression signatures underlying pediatric high-grade glioma (HGG). PATIENTS AND METHODS: We conducted a high-resolution analysis of genomic imbalances in 78 de novo pediatric HGGs, including seven diffuse intrinsic pontine gliomas, and 10 HGGs arising in children who received cranial irradiation for a previous cancer using single nucleotide polymorphism microarray analysis. Gene expression was analyzed with gene expression microarrays for 53 tumors. Results were compared with publicly available data from adult tumors. RESULTS: Significant differences in copy number alterations distinguish childhood and adult glioblastoma. PDGFRA was the predominant target of focal amplification in childhood HGG, including diffuse intrinsic pontine gliomas, and gene expression analyses supported an important role for deregulated PDGFRalpha signaling in pediatric HGG. No IDH1 hotspot mutations were found in pediatric tumors, highlighting molecular differences with adult secondary glioblastoma. Pediatric and adult glioblastomas were clearly distinguished by frequent gain of chromosome 1q (30% v 9%, respectively) and lower frequency of chromosome 7 gain (13% v 74%, respectively) and 10q loss (35% v 80%, respectively). PDGFRA amplification and 1q gain occurred at significantly higher frequency in irradiation-induced tumors, suggesting that these are initiating events in childhood gliomagenesis. A subset of pediatric HGGs showed minimal copy number changes. CONCLUSION: Integrated molecular profiling showed substantial differences in the molecular features underlying pediatric and adult HGG, indicating that findings in adult tumors cannot be simply extrapolated to younger patients. PDGFRalpha may be a useful target for pediatric HGG, including diffuse pontine gliomas.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica , Glioma/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Adulto , Neoplasias Encefálicas/patología , Niño , Preescolar , Cromosomas Humanos Par 1/genética , Irradiación Craneana , Glioma/patología , Humanos , Lactante , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Adulto Joven
9.
J Pathol ; 220(4): 419-34, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20044801

RESUMEN

We hypothesized that the functional status of p53 transcriptional pathways, rather than p53 protein expression alone, could accurately discriminate between low- and high-risk breast carcinoma (BC) and inform about individuals' tumour biological behaviour. To test this, we studied a well-characterized series of 990 BCs with long-term follow-up, immunohistochemically profiled for p53, its main regulators and downstream genes. Results were validated in an independent series of patients (n = 245) uniformly treated with adjuvant anthracycline-based chemotherapy. Eleven p53 transcriptional phenotypes were identified with just two main clinical outcomes. (a) Low risk/good prognosis group (active/partially inactive p53 pathways), defined as p53(+/-)/MDM4(+)/MDM2(+/-)/Bcl2(+/-)/p21(+/-), p53(-)/MDM4(-)/MDM2(+)/Bcl2(+)/p21(+/-) and p53(+/-)/MDM4(-)/MMD2(-)/Bcl2(+)/p21(+/-). These tumours had favourable clinicopathological characteristics, including ER(+) and long survival after systemic adjuvant-therapy (AT). (b) High risk/poor prognosis group (completely inactive p53 pathways), defined as p53(+/-)/MDM4(-) MDM2(-)/Bcl2(-)/p21(-), p53(-)/MDM4(-) MDM2(+)/Bcl2(-)/p21(-) and p53(+/-)/MDM4(-)/MDM2(-)/Bcl2(-)/p21(+). These tumours were characterized by aggressive clinicopathological characteristics and showed shortened survival when treated with AT. Completely inactive p53 pathways but intact p21 axis p53(+/-)/MDM4(-)/MDM2(-)/Bcl2(-)/p21(+) had the worst prognosis, particularly patients who received AT. Multivariate Cox regression models, including validated prognostic factors for both test and validation series, revealed that the functional status of p53 transcriptional pathways was an independent prognosticator for BC-specific survival (HR 2.64 and 4.5, p < 0.001, respectively) and disease-free survival (HR 1.93 and 2.5, p < 0.001, respectively). In conclusion, p53 functional status determined by assessment of p53 regulatory and downstream targets provides independent prognostic value and may help determine more adequate therapeutic regimens for specific subgroups of breast cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular , Quimioterapia Adyuvante , Femenino , Estudios de Seguimiento , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Análisis de Supervivencia , Transcripción Genética , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA