Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 43(6): 940-950, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609694

RESUMEN

In silico methods to estimate and/or quantify skin absorption of chemicals as a function of chemistry are needed to realistically predict pharmacological, occupational, and environmental exposures. The Potts-Guy equation is a well-established approach, using multi-linear regression analysis describing skin permeability (Kp) in terms of the octanol/water partition coefficient (logP) and molecular weight (MW). In this work, we obtained regression equations for different human datasets relevant to environmental and cosmetic chemicals. Since the Potts-Guy equation was published in 1992, we explored recent datasets that include different skin layers, such as dermatomed (including dermis to a defined thickness) and full skin. Our work was consistent with others who have observed that fits to the Potts-Guy equation are stronger for experiments focused on the epidermis. Permeability estimates for dermatomed skin and full skin resulted in low regression coefficients when compared to epidermis datasets. An updated regression equation uses a combination of fitted permeability values obtained with a published 2D compartmental model previously evaluated. The resulting regression equation was: logKp = -2.55 + 0.65logP - 0.0085MW, R2 = 0.91 (applicability domain for all datasets: MW ranges from 18 to >584 g/mol and -4 to >5 for logP). This approach demonstrates the advantage of combining mechanistic with structural activity relationships in a single modeling approach. This combination approach results in an improved regression fit when compared to permeability estimates obtained using the Potts-Guy approach alone. The analysis presented in this work assumes a one-compartment skin absorption route; future modeling work will consider adding multiple compartments.


Asunto(s)
Absorción Cutánea , Piel , Masculino , Humanos , Piel/metabolismo , Análisis de Regresión , Modelos Lineales , Permeabilidad
2.
Mutat Res ; 714(1-2): 17-25, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21689667

RESUMEN

Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ((32)P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine. Although BP induced abasic sites, DBP did not. Most importantly, the proportion of mutations induced by DBP at adenine and guanine paralleled the proportion of stable DNA adducts induced by DBP at adenine and guanine; however, this was not the case for BP. Our results leave open a possible role for unstable DNA adducts in the mutational specificity of BP but not for DBP.


Asunto(s)
Benzo(a)pireno/toxicidad , Benzopirenos/toxicidad , Aductos de ADN , Mutágenos/toxicidad , Adenina , Guanina , Pruebas de Mutagenicidad , Mutación , Salmonella/genética
3.
Environ Mol Mutagen ; 52(1): 58-68, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20839217

RESUMEN

Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by (32)P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with 7ß,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49-312 PAH-DNA adducts/10(8) nucleotides, were found by IHC/ACIS in 14 immediately fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7-8.6 stable/bulky DNA adducts/10(8) nucleotides and 0.6-47.2 AB sites/10(5) nucleotides. For all methods, there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and nonsmokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi.


Asunto(s)
Daño del ADN , Fumar/efectos adversos , República Checa , Aductos de ADN/toxicidad , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Sueros Inmunes , Inmunohistoquímica , Técnicas In Vitro , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Embarazo
4.
Chem Biol Interact ; 186(2): 157-65, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20346927

RESUMEN

Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis.


Asunto(s)
7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/química , Benzo(a)pireno/toxicidad , Carcinógenos/toxicidad , Aductos de ADN/biosíntesis , Aductos de ADN/química , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Acetilcisteína/farmacología , Animales , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Depuradores de Radicales Libres/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos A , Modelos Biológicos , Radioisótopos de Fósforo , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad
5.
Cancer Res ; 67(9): 4173-81, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17483328

RESUMEN

The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice.


Asunto(s)
Antígenos CD34/biosíntesis , Folículo Piloso/metabolismo , Neoplasias Cutáneas/metabolismo , Células Madre/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Antígenos CD34/genética , Ciclo Celular/fisiología , Movimiento Celular/fisiología , Femenino , Folículo Piloso/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología , Células Madre/patología , Acetato de Tetradecanoilforbol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA