Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(1): 166-177, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37978912

RESUMEN

Cancer remains an issue on a global scale. It is estimated that nearly 10 million people succumbed to cancer worldwide in 2020. New treatment options are urgently needed. A promising approach is a conversion of tumor-promoting M2 tumor-associated macrophages (TAMs) as part of the tumor microenvironment to tumor-suppressive M1 TAMs by small interfering RNA (siRNA). In this work, we present a well-characterized polymeric nanocarrier system capable of targeting M2 TAMs by a ligand-receptor interaction. Therefore, we developed a blended PEI-based polymeric nanoparticle system conjugated with mannose, which is internalized after interaction with macrophage mannose receptors (MMRs), showing low cytotoxicity and negligible IL-6 activation. The PEI-PCL-PEI (5 kDa-5 kDa-5 kDa) and Man-PEG-PCL (2 kDa-2 kDa) blended siRNA delivery system was optimized for maximum targeting capability and efficient endosomal escape by evaluation of different polymer and N/P ratios. The nanoparticles were formulated by surface acoustic wave-assisted microfluidics, achieving a size of ∼80 nm and a zeta potential of approximately +10 mV. Special attention was given to the endosomal escape as the so-called bottleneck of RNA drug delivery. To estimate the endosomal escape capability of the nanocarrier system, we developed a prediction method by evaluating the particle stability via the inflection temperature. Our predictions were then verified in an in vitro setting by applying confocal microscopy. For cellular experiments, however, human THP-1 cells were polarized to M2 macrophages by cytokine treatment and validated through MMR expression. To show the efficiency of the nanoparticle system, GAPDH and IκBα knockdown was performed in the presence or absence of an MMR blocking excess of mannan. Cellular uptake, GAPDH knockdown, and NF-κB western blot confirmed efficient mannose targeting. Herein, we presented a well-characterized nanoparticle delivery system and a promising approach for targeting M2 macrophages by a mannose-MMR interaction.


Asunto(s)
Neoplasias , Polímeros de Estímulo Receptivo , Humanos , Polímeros de Estímulo Receptivo/metabolismo , ARN Interferente Pequeño/genética , Manosa/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Polímeros/metabolismo , Neoplasias/tratamiento farmacológico
2.
Cell Rep ; 42(11): 113265, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37864789

RESUMEN

In natural environments, photosynthetic organisms adjust their metabolism to cope with the fluctuating availability of combined nitrogen sources, a growth-limiting factor. For acclimation, the dynamic degradation/synthesis of tetrapyrrolic pigments, as well as of the amino acid arginine, is pivotal; however, there has been no evidence that these processes could be functionally coupled. Using co-immunopurification and spectral shift assays, we found that in the cyanobacterium Synechocystis sp. PCC 6803, the arginine metabolism-related ArgD and CphB enzymes form protein complexes with Gun4, an essential protein for chlorophyll biosynthesis. Gun4 binds ArgD with high affinity, and the Gun4-ArgD complex accumulates in cells supplemented with ornithine, a key intermediate of the arginine pathway. Elevated ornithine levels restricted de novo synthesis of tetrapyrroles, which arrested the recovery from nitrogen deficiency. Our data reveal a direct crosstalk between tetrapyrrole biosynthesis and arginine metabolism that highlights the importance of balancing photosynthetic pigment synthesis with nitrogen homeostasis.


Asunto(s)
Synechocystis , Synechocystis/metabolismo , Clorofila/metabolismo , Arginina/metabolismo , Ornitina , Nitrógeno
3.
J Control Release ; 351: 137-150, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36126785

RESUMEN

While all the siRNA drugs on the market target the liver, the lungs offer a variety of currently undruggable targets which could potentially be treated with RNA therapeutics. Hence, local, pulmonary delivery of RNA nanoparticles could finally enable delivery beyond the liver. The administration of RNA drugs via dry powder inhalers offers many advantages related to physical, chemical and microbial stability of RNA and nanosuspensions. The present study was therefore designed to test the feasibility of engineering spray dried lipid nanoparticle (LNP) powders. Spray drying was performed using 5% lactose solution (m/V), and the targets were set to obtain nanoparticle sizes after redispersion of spray-dried powders around 150 nm, a residual moisture level below 5%, and RNA loss below 15% at maintained RNA bioactivity. The LNPs consisted of an ionizable cationic lipid which is a sulfur-containing analog of DLin-MC3-DMA, a helper lipid, cholesterol, and PEG-DMG encapsulating siRNA. Prior to the spray drying, the latter process was simulated with a novel dual emission fluorescence spectroscopy method to preselect the highest possible drying temperature and excipient solution maintaining LNP integrity and stability. Through characterization of physicochemical and aerodynamic properties of the spray dried powders, administration criteria for delivery to the lower respiratory tract were fulfilled. Spray dried LNPs penetrated the lung mucus layer and maintained bioactivity for >90% protein downregulation with a confirmed safety profile in a lung adenocarcinoma cell line. Additionally, the spray dried LNPs successfully achieved up to 50% gene silencing of the house keeping gene GAPDH in ex vivo human precision-cut lung slices at without increasing cytokine levels. This study verifies the successful spray drying procedure of LNP-siRNA systems maintaining their integrity and mediating strong gene silencing efficiency on mRNA and protein levels both in vitro and ex vivo. The successful spray drying procedure of LNP-siRNA formulations in 5% lactose solution creates a novel siRNA-based therapy option to target respiratory diseases such as lung cancer, asthma, COPD, cystic fibrosis and viral infections.


Asunto(s)
Lactosa , Nanopartículas , Humanos , Polvos/química , ARN Interferente Pequeño , Administración por Inhalación , Secado por Pulverización , Tamaño de la Partícula , Aerosoles y Gotitas Respiratorias , Nanopartículas/química , Inhaladores de Polvo Seco , Pulmón , Lípidos , Aerosoles/química
4.
Nat Commun ; 12(1): 4554, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315891

RESUMEN

The planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive). AepXVW is found in diverse marine heterotrophs and is ubiquitously distributed in mesopelagic and epipelagic waters. Unlike the archetypal phosphonate binding protein, PhnD, AepX has high affinity and high specificity for 2AEP (Stappia stellulata AepX Kd 23 ± 4 nM; methylphosphonate Kd 3.4 ± 0.3 mM). In the global ocean, aepX is heavily transcribed (~100-fold>phnD) independently of phosphate and nitrogen concentrations. Collectively, our data identifies a mechanism responsible for a major oxidation process in the marine phosphorus redox cycle and suggests 2AEP may be an important source of regenerated phosphate and ammonium, which are required for oceanic primary production.


Asunto(s)
Ácido Aminoetilfosfónico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Minerales/metabolismo , Fósforo/metabolismo , Rhodobacteraceae/metabolismo , Agua de Mar/microbiología , Proteínas Bacterianas/metabolismo , Transporte Biológico , Regulación Bacteriana de la Expresión Génica , Cinética , Océanos y Mares , Oxidación-Reducción , Filogenia , Proteómica , Pseudomonas putida/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rhodobacteraceae/genética
5.
Nat Plants ; 7(3): 365-375, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33731920

RESUMEN

Mg-protoporphyrin IX monomethyl ester (MgPME) cyclase catalyses the formation of the isocyclic ring, producing protochlorophyllide a and contributing substantially to the absorption properties of chlorophylls and bacteriochlorophylls. The O2-dependent cyclase is found in both oxygenic phototrophs and some purple bacteria. We overproduced the simplest form of the cyclase, AcsF, from Rubrivivax gelatinosus, in Escherichia coli. In biochemical assays the di-iron cluster within AcsF is reduced by ferredoxin furnished by NADPH and ferredoxin:NADP+ reductase, or by direct coupling to Photosystem I photochemistry, linking cyclase to the photosynthetic electron transport chain. Kinetic analyses yielded a turnover number of 0.9 min-1, a Michaelis-Menten constant of 7.0 µM for MgPME and a dissociation constant for MgPME of 0.16 µM. Mass spectrometry identified 131-hydroxy-MgPME and 131-keto-MgPME as cyclase reaction intermediates, revealing the steps that form the isocyclic ring and completing the work originated by Sam Granick in 1950.


Asunto(s)
Proteínas Bacterianas/química , Burkholderiales/química , Clorofila/química , Metaloproteínas/química , Protoporfirinas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Burkholderiales/enzimología , Burkholderiales/genética , Clorofila/metabolismo , Clonación Molecular , Transporte de Electrón , Escherichia coli , Espectrometría de Masas , Metaloproteínas/genética , Metaloproteínas/aislamiento & purificación , Metaloproteínas/metabolismo , Protoporfirinas/metabolismo
6.
Nat Plants ; 6(12): 1491-1502, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33257858

RESUMEN

The insertion of magnesium into protoporphyrin initiates the biosynthesis of chlorophyll, the pigment that underpins photosynthesis. This reaction, catalysed by the magnesium chelatase complex, couples ATP hydrolysis by a ChlID motor complex to chelation within the ChlH subunit. We probed the structure and catalytic function of ChlH using a combination of X-ray crystallography, computational modelling, mutagenesis and enzymology. Two linked domains of ChlH in an initially open conformation of ChlH bind protoporphyrin IX, and the rearrangement of several loops envelops this substrate, forming an active site cavity. This induced fit brings an essential glutamate (E660), proposed to be the key catalytic residue for magnesium insertion, into proximity with the porphyrin. A buried solvent channel adjacent to E660 connects the exterior bulk solvent to the active site, forming a possible conduit for the delivery of magnesium or abstraction of protons.


Asunto(s)
Clorofila/biosíntesis , Activación Enzimática , Liasas/metabolismo , Fotosíntesis/fisiología , Protoporfirinas/metabolismo , Thermosynechococcus/metabolismo
7.
Methods Mol Biol ; 2168: 51-62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33582986

RESUMEN

The combination of MicroScale Thermophoresis (MST) and near-native site-specific His-tag labeling enables simple, robust, and reliable determination of the binding affinity between proteins and ligands. To demonstrate its applicability for periplasmic proteins, we provide a detailed protocol for determination of the binding affinity of phosphite to three ABC transporter periplasmic-binding proteins from environmental microorganisms. ABC transporters are central to many important biomedical phenomena, including resistance of cancers and pathogenic microbes to drugs. The protocol described here can be used to quantify protein-ligand and protein-protein interactions for other soluble, membrane-associated and integral membrane proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Técnicas de Química Analítica/métodos , Histidina/química , Proteínas de Unión Periplasmáticas/metabolismo , Fosfitos/metabolismo , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica
8.
Sci Rep ; 9(1): 10231, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308436

RESUMEN

Phosphorus acquisition is critical for life. In low phosphate conditions, some species of bacteria have evolved mechanisms to import reduced phosphorus compounds, such as phosphite and hypophosphite, as alternative phosphorus sources. Uptake is facilitated by high-affinity periplasmic binding proteins (PBPs) that bind cargo in the periplasm and shuttle it to an ATP-binding cassette (ABC)-transporter in the bacterial inner membrane. PtxB and HtxB are the PBPs responsible for binding phosphite and hypophosphite, respectively. They recognize the P-H bond of phosphite/hypophosphite via a conserved P-H...π interaction, which confers nanomolar dissociation constants for their respective ligands. PtxB also has a low-level binding affinity for phosphate and hypophosphite, whilst HtxB can facilitate phosphite uptake in vivo. However, HtxB does not bind phosphate, thus the HtxBCDE transporter has recently been successfully exploited for biocontainment of genetically modified organisms by phosphite-dependent growth. Here we use a combination of X-ray crystallography, NMR and Microscale Thermophoresis to show that phosphite binding to HtxB depends on the protonation state of the ligand, suggesting that pH may effect the efficiency of phosphite uptake by HtxB in biotechnology applications.


Asunto(s)
Proteínas de Unión Periplasmáticas/metabolismo , Fosfitos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Cristalografía por Rayos X/métodos , Ligandos , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/fisiología , Fosfatos/química , Fosfatos/metabolismo , Fosfitos/química , Fósforo/química , Fósforo/metabolismo , Unión Proteica
9.
Biochem J ; 476(13): 1875-1887, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31164400

RESUMEN

Magnesium chelatase initiates chlorophyll biosynthesis, catalysing the MgATP2--dependent insertion of a Mg2+ ion into protoporphyrin IX. The catalytic core of this large enzyme complex consists of three subunits: Bch/ChlI, Bch/ChlD and Bch/ChlH (in bacteriochlorophyll and chlorophyll producing species, respectively). The D and I subunits are members of the AAA+ (ATPases associated with various cellular activities) superfamily of enzymes, and they form a complex that binds to H, the site of metal ion insertion. In order to investigate the physical coupling between ChlID and ChlH in vivo and in vitro, ChlD was FLAG-tagged in the cyanobacterium Synechocystis sp. PCC 6803 and co-immunoprecipitation experiments showed interactions with both ChlI and ChlH. Co-production of recombinant ChlD and ChlH in Escherichia coli yielded a ChlDH complex. Quantitative analysis using microscale thermophoresis showed magnesium-dependent binding (Kd 331 ± 58 nM) between ChlD and H. The physical basis for a ChlD-H interaction was investigated using chemical cross-linking coupled with mass spectrometry (XL-MS), together with modifications that either truncate ChlD or modify single residues. We found that the C-terminal integrin I domain of ChlD governs association with ChlH, the Mg2+ dependence of which also mediates the cooperative response of the Synechocystis chelatase to magnesium. The interaction site between the AAA+ motor and the chelatase domain of magnesium chelatase will be essential for understanding how free energy from the hydrolysis of ATP on the AAA+ ChlI subunit is transmitted via the bridging subunit ChlD to the active site on ChlH.


Asunto(s)
Liasas/química , Magnesio/química , Proteínas Recombinantes/química , Synechocystis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Liasas/genética , Dominios Proteicos , Proteínas Recombinantes/genética , Synechocystis/genética
10.
J Biol Chem ; 293(18): 6672-6681, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29559557

RESUMEN

Protein transport across the cytoplasmic membrane of bacterial cells is mediated by either the general secretion (Sec) system or the twin-arginine translocase (Tat). The Tat machinery exports folded and cofactor-containing proteins from the cytoplasm to the periplasm by using the transmembrane proton motive force as a source of energy. The Tat apparatus apparently senses the folded state of its protein substrates, a quality-control mechanism that prevents premature export of nascent unfolded or misfolded polypeptides, but its mechanistic basis has not yet been determined. Here, we investigated the innate ability of the model Escherichia coli Tat system to recognize and translocate de novo-designed protein substrates with experimentally determined differences in the extent of folding. Water-soluble, four-helix bundle maquette proteins were engineered to bind two, one, or no heme b cofactors, resulting in a concomitant reduction in the extent of their folding, assessed with temperature-dependent CD spectroscopy and one-dimensional 1H NMR spectroscopy. Fusion of the archetypal N-terminal Tat signal peptide of the E. coli trimethylamine-N-oxide (TMAO) reductase (TorA) to the N terminus of the protein maquettes was sufficient for the Tat system to recognize them as substrates. The clear correlation between the level of Tat-dependent export and the degree of heme b-induced folding of the maquette protein suggested that the membrane-bound Tat machinery can sense the extent of folding and conformational flexibility of its substrates. We propose that these artificial proteins are ideal substrates for future investigations of the Tat system's quality-control mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hemoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Dicroismo Circular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Unión al Hemo , Hemoproteínas/química , Proteínas de Transporte de Membrana/química , Metilaminas/metabolismo , Modelos Moleculares , Oxidorreductasas N-Desmetilantes/metabolismo , Periplasma/metabolismo , Pliegue de Proteína , Señales de Clasificación de Proteína , Estabilidad Proteica , Transporte de Proteínas , Espectroscopía de Protones por Resonancia Magnética , Especificidad por Sustrato , Temperatura
11.
Nat Commun ; 8(1): 1746, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170493

RESUMEN

Inorganic phosphate is the major bioavailable form of the essential nutrient phosphorus. However, the concentration of phosphate in most natural habitats is low enough to limit microbial growth. Under phosphate-depleted conditions some bacteria utilise phosphite and hypophosphite as alternative sources of phosphorus, but the molecular basis of reduced phosphorus acquisition from the environment is not fully understood. Here, we present crystal structures and ligand binding affinities of periplasmic binding proteins from bacterial phosphite and hypophosphite ATP-binding cassette transporters. We reveal that phosphite and hypophosphite specificity results from a combination of steric selection and the presence of a P-H…π interaction between the ligand and a conserved aromatic residue in the ligand-binding pocket. The characterisation of high affinity and specific transporters has implications for the marine phosphorus redox cycle, and might aid the use of phosphite as an alternative phosphorus source in biotechnological, industrial and agricultural applications.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácidos Fosfínicos/metabolismo , Fosfitos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Cinética , Ligandos , Modelos Moleculares , Filogenia , Prochlorococcus/genética , Prochlorococcus/metabolismo , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Trichodesmium/genética , Trichodesmium/metabolismo
12.
J Am Chem Soc ; 138(20): 6591-7, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27133226

RESUMEN

In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg(2+) ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA(+) proteins ChlI and ChlD, form a ChlID-MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of a ChlID-MgADP complex, mediated by the arginine finger and the sensor II domain on ChlD, is necessary for the assembly of the catalytically active ChlHID-MgATP complex. The N-terminal AAA(+) domain of ChlD is essential for complex formation, but some stability is preserved in the absence of the C-terminal integrin domain of ChlD, particularly if the intervening polyproline linker region is retained. Single molecule force spectroscopy (SMFS) was used to determine the factors that stabilize formation of the ChlID-MgADP complex at the single molecule level; ChlD was attached to an atomic force microscope (AFM) probe in two different orientations, and the ChlI subunits were tethered to a silica surface; the probability of subunits interacting more than doubled in the presence of MgADP, and we show that the N-terminal AAA(+) domain of ChlD mediates this process, in agreement with the microscale thermophoresis data. Analysis of the unbinding data revealed a most probable interaction force of around 109 pN for formation of single ChlID-MgADP complexes. These experiments provide a quantitative basis for understanding the assembly and function of the Mg chelatase complex.


Asunto(s)
Proteínas Bacterianas/química , Liasas/química , Nucleótidos/química , Catálisis , Synechocystis/química , Synechocystis/enzimología
13.
FEBS Lett ; 590(12): 1687-93, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27176620

RESUMEN

In the first committed reaction of chlorophyll biosynthesis, magnesium chelatase couples ATP hydrolysis to the thermodynamically unfavorable Mg(2+) insertion into protoporphyrin IX (ΔG°' of circa 25-33 kJ·mol(-1) ). We explored the thermodynamic constraints on magnesium chelatase and demonstrate the effect of nucleotide hydrolysis on both the reaction kinetics and thermodynamics. The enzyme produces a significant rate enhancement (kcat /kuncat of 400 × 10(6) m) and a catalytic rate enhancement, kcat/KmDIXK0.5Mgkuncat, of 30 × 10(15) m(-1) , increasing to 300 × 10(15) m(-1) with the activator protein Gun4. This is the first demonstration of the thermodynamic benefit of ATP hydrolysis in the AAA(+) family.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Liasas/química , Magnesio/química , Protoporfirinas/química , Synechocystis/enzimología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Catálisis , Liasas/metabolismo , Magnesio/metabolismo , Protoporfirinas/biosíntesis
14.
Biochemistry ; 54(44): 6659-62, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26513685

RESUMEN

Magnesium chelatase catalyzes the first committed step in chlorophyll biosynthesis by inserting a Mg(2+) ion into protoporphyrin IX in an ATP-dependent manner. The cyanobacterial (Synechocystis) and higher-plant chelatases exhibit a complex cooperative response to free magnesium, while the chelatases from Thermosynechococcus elongatus and photosynthetic bacteria do not. To investigate the basis for this cooperativity, we constructed a series of chimeric ChlD proteins using N-terminal, central, and C-terminal domains from Synechocystis and Thermosynechococcus. We show that five glutamic acid residues in the C-terminal domain play a major role in this process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Liasas/metabolismo , Magnesio/metabolismo , Synechococcus/metabolismo , Synechocystis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cationes Bivalentes/metabolismo , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Liasas/química , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Synechococcus/química , Synechocystis/química
15.
J Biol Chem ; 290(47): 28477-28488, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26446792

RESUMEN

In oxygenic phototrophs, chlorophylls, hemes, and bilins are synthesized by a common branched pathway. Given the phototoxic nature of tetrapyrroles, this pathway must be tightly regulated, and an important regulatory role is attributed to magnesium chelatase enzyme at the branching between the heme and chlorophyll pathway. Gun4 is a porphyrin-binding protein known to stimulate in vitro the magnesium chelatase activity, but how the Gun4-porphyrin complex acts in the cell was unknown. To address this issue, we first performed simulations to determine the porphyrin-docking mechanism to the cyanobacterial Gun4 structure. After correcting crystallographic loop contacts, we determined the binding site for magnesium protoporphyrin IX. Molecular modeling revealed that the orientation of α6/α7 loop is critical for the binding, and the magnesium ion held within the porphyrin is coordinated by Asn-211 residue. We also identified the basis for stronger binding in the Gun4-1 variant and for weaker binding in the W192A mutant. The W192A-Gun4 was further characterized in magnesium chelatase assay showing that tight porphyrin binding in Gun4 facilitates its interaction with the magnesium chelatase ChlH subunit. Finally, we introduced the W192A mutation into cells and show that the Gun4-porphyrin complex is important for the accumulation of ChlH and for channeling metabolites into the chlorophyll biosynthetic pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clorofila/biosíntesis , Porfirinas/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/química , Dicroismo Circular , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Synechocystis/genética , Synechocystis/crecimiento & desarrollo
16.
Biochem J ; 464(3): 315-22, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25471602

RESUMEN

Magnesium chelatase (MgCH) initiates chlorophyll biosynthesis by catalysing the ATP-dependent insertion of Mg2+ into protoporphyrin. This large enzyme complex comprises ChlH, I and D subunits, with I and D involved in ATP hydrolysis, and H the protein that handles the substrate and product. The 148 kDa ChlH subunit has a globular N-terminal domain attached by a narrow linker to a hollow cage-like structure. Following deletion of this ~18 kDa domain from the Thermosynechoccus elongatus ChlH, we used single particle reconstruction to show that the apo- and porphyrin-bound forms of the mutant subunit consist of a hollow globular protein with three connected lobes; superposition of the mutant and native ChlH structures shows that, despite the clear absence of the N-terminal 'head' region, the rest of the protein appears to be correctly folded. Analyses of dissociation constants shows that the ΔN159ChlH mutant retains the ability to bind protoporphyrin and the Gun4 enhancer protein, although the addition of I and D subunits yields an extremely impaired active enzyme complex. Addition of the Gun4 enhancer protein, which stimulates MgCH activity significantly especially at low Mg2+ concentrations, partially reactivates the ΔN159ChlH-I-D mutant enzyme complex, suggesting that the binding site or sites for Gun4 on H do not wholly depend on the N-terminal domain.


Asunto(s)
Liasas/química , Liasas/fisiología , Synechococcus/enzimología , Secuencia de Aminoácidos , Eliminación de Gen , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad
17.
Biochem J ; 457(1): 163-70, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24138165

RESUMEN

The first committed step in chlorophyll biosynthesis is catalysed by magnesium chelatase (E.C. 6.6.1.1), which uses the free energy of ATP hydrolysis to insert an Mg(2+) ion into the ring of protoporphyrin IX. We have characterized magnesium chelatase from the thermophilic cyanobacterium Thermosynechococcus elongatus. This chelatase is thermostable, with subunit melting temperatures between 55 and 63°C and optimal activity at 50°C. The T. elongatus chelatase (kcat of 0.16 µM/min) shows a Michaelis-Menten-type response to both Mg(2+) (Km of 2.3 mM) and MgATP(2-) (Km of 0.8 mM). The response to porphyrin is more complex; porphyrin inhibits at high concentrations of ChlH, but when the concentration of ChlH is comparable with the other two subunits the response is of a Michaelis-Menten type (at 0.4 µM ChlH, Km is 0.2 µM). Hybrid magnesium chelatases containing a mixture of subunits from the mesophilic Synechocystis and Thermosynechococcus enzymes are active. We generated all six possible hybrid magnesium chelatases; the hybrid chelatase containing Thermosynechococcus ChlD and Synechocystis ChlI and ChlH is not co-operative towards Mg(2+), in contrast with the Synechocystis magnesium chelatase. This loss of co-operativity reveals the significant regulatory role of Synechocystis ChlD.


Asunto(s)
Cianobacterias/enzimología , Liasas/fisiología , Adenosina Trifosfato/farmacología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Activación Enzimática , Cinética , Liasas/química , Liasas/aislamiento & purificación , Magnesio/farmacología , Concentración Osmolar , Subunidades de Proteína/fisiología , Synechocystis/enzimología , Temperatura
18.
J Biol Chem ; 288(40): 28727-32, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23940041

RESUMEN

Magnesium chelatase is an AAA(+) ATPase that catalyzes the first step in chlorophyll biosynthesis, the energetically unfavorable insertion of a magnesium ion into a porphyrin ring. This enzyme contains two AAA(+) domains, one active in the ChlI protein and one inactive in the ChlD protein. Using a series of mutants in the AAA(+) domain of ChlD, we show that this site is essential for magnesium chelation and allosterically regulates Mg(2+) and MgATP(2-) binding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Liasas/química , Liasas/metabolismo , Synechocystis/enzimología , Adenosina Trifosfato/farmacología , Regulación Alostérica , Dicroismo Circular , Deuteroporfirinas/metabolismo , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
19.
ChemMedChem ; 7(5): 766-70, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22431333

RESUMEN

Inspired by nature: Angelmarin is an anticancer natural product with potent antiausterity activity, that is, selective cytotoxicity towards nutrient-deprived, resistant cancer cells. Through structure-activity relationship studies, three analogues were identified as lead compounds for the develpoment of molecular probes for the investigation of the mode of action and biological targets of the antiausterity compounds.


Asunto(s)
Antineoplásicos/síntesis química , Cumarinas/síntesis química , Extractos Vegetales/síntesis química , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Productos Biológicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cumarinas/química , Cumarinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Alimentos , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Neoplasias Pancreáticas/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Estereoisomerismo , Estrés Fisiológico/fisiología , Relación Estructura-Actividad
20.
Biochemistry ; 51(10): 2029-31, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22372406

RESUMEN

Magnesium chelatase is an AAA(+) ATPase that catalyzes the first committed step in chlorophyll biosynthesis. Using nonequilibrium isotope exchange, we show that the ATP hydrolysis reaction proceeds via an enzyme-phosphate complex. Exchange from radiolabeled phosphate to ATP was not observed, offering no support for an enzyme-ADP complex.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Liasas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/química , Hidrólisis , Cinética , Liasas/química , Modelos Biológicos , Fosfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...