Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(25): 9823-9829, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38939161

RESUMEN

Transformation chemistry of atomically precise metal nanoclusters has emerged as a novel strategy for fundamental research on the structure-property correlations of nanomaterials. However, a thorough understanding of the transformation mechanism is indeed necessary to understand the structural growth patterns and corresponding property evolutions in nanoclusters. Herein, we present the ligand-exchange-induced transformation of the [Au23(SR)16]- (8e-) nanocluster to the [Au25(SR')18]- (8e-) nanocluster, through the Au23(SR)17 (6e-) intermediate species. Identification of this key intermediate through a partially reversible transformation helped in a detailed investigation into the transformation mechanism with atomic precision. Moreover, photophysical studies carried out on this Au23(SR)17 species, which only differs by a single ligand from that of the [Au23(SR)16]- nanocluster reveal the property evolutions at the slightest change in the nanocluster structure.

2.
Phys Rev Lett ; 132(6): 063803, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394562

RESUMEN

Superfluorescence, a cooperative coherent spontaneous emission, is of great importance to the understanding of many-body correlation in optical processes. Even though superfluorescence has been demonstrated in many diverse systems, it is hard to observe in electron-hole plasma (EHP) due to its rapid dephasing and hence needs strong magnetic fields or complex microcavities. Herein, we report the first experimental observation of superfluorescence from EHP up to a moderate temperature of 175 K without external stimuli in a coupled metal halide perovskite quantum dots film. The EHP exhibits macroscopic quantum coherence through spontaneous synchronization. The coherence of the excited state decays by superfluorescence, which is redshifted 40 meV from the spontaneous emission with a ∼1700 times faster decay rate and exhibits quadratic fluence dependence. Notably, the excited state population's delayed growth and abrupt decay, which are strongly influenced by the pump fluence and the Burnham-Chiao ringing, are the characteristics of the superfluorescence. Our findings will open up a new frontier for cooperative emission and light beam-based technologies.

3.
J Phys Condens Matter ; 35(23)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36917860

RESUMEN

Reduced dielectric screening in two-dimensional materials enables bound excitons, which modifies their optical absorption and optoelectronic response. Here, we demonstrate the existence of excitons in the bandgap of the monolayer family of the newly discovered syntheticMoSi2Z4(Z=N, P, and As) series of materials. All three monolayers support several bright and strongly bound excitons with binding energies varying from 1 eV to 1.35 eV for the lowest energy exciton resonances. We show that on increasing the pump fluence or photo-excited carrier density, the lowest energy exciton first undergoes a redshift followed by a blueshift, due to the renormalized exciton binding energies. The exciton binding energy varies as a Lennard-Jones-like potential as a function of the inter-exciton spacing. This establishes an atom-like attractive and repulsive interaction between excitons depending on the inter-exciton separation. Our study shows that theMoSi2Z4series of monolayers offer an exciting test-bed for exploring the physics of strongly bound excitons and their non-equilibrium dynamics.

4.
Nano Lett ; 22(22): 8908-8916, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36318695

RESUMEN

Auger recombination and thermalization time are detrimental in reducing the gain threshold of optically pumped semiconductor nanocrystal (NC) lasers for future on-chip nanophotonic devices. Here, we report the design strategy of facet engineering to reduce the gain threshold of amplified spontaneous emission by manyfold in NCs of the same concentration and edge length. We achieved this hallmark result by controlling the Auger recombination rates dominated by processes involving NC volume and thermalization time to the emitting states by optimizing the number of facets from 6 (cube) to 12 (rhombic dodecahedron) and 26 (rhombicuboctahedrons) in CsPbBr3 NCs. For instance, we demonstrate a 2-fold reduction in Auger recombination rates and thermalization time with increased number of facets. The gain threshold can be further reduced ∼50% by decreasing the sample temperature to 4 K. Our systematic studies offer a new method to reduce the gain threshold that ultimately forms the basis of nanolasers.

5.
Opt Lett ; 47(19): 5196-5199, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181220

RESUMEN

In this Letter, we report the third-order absorptive and refractive nonlinear optical response of highly luminescent WS2 quantum dots (QDs) in the off-resonant femtosecond and nanosecond pulses, which is beneficial for optical limiting and quantum information processing. For 800 nm femtosecond excitation, QDs show two-photon absorption (ß = (107 ± 2)×10-3 cm/GW) with positive nonlinearity originating from bound carriers. This picture changes significantly for 532 nm nanosecond excitation, where it shows reverse saturable absorption with negative nonlinearity primarily originating from the sequential absorption of two single photons through the shallow defects, creating free carriers. Our results provide a promising route toward low-dimensional optoelectronic devices.

7.
Nano Lett ; 22(2): 808-814, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34990139

RESUMEN

Nonresonant optical driving of confined semiconductors can open up exciting opportunities for experimentally realizing strongly interacting photon-dressed (Floquet) states through the optical Stark effect (OSE) for coherent modulation of the exciton state. Here we report the first room-temperature observation of the Floquet biexciton-mediated anomalous coherent excitonic OSE in CsPbBr3 quantum dots (QDs). Remarkably, the strong exciton-biexciton interaction leads to a coherent red shift and splitting of the exciton resonance as a function of the drive photon frequency, similar to Autler-Townes splitting in atomic and molecular systems. The large biexciton binding energy of ∼71 meV and exciton-biexciton transition dipole moment of ∼25 D facilitate the hallmark observations, even at large detuning energies of >300 meV. This is accompanied by an unusual crossover from linear to nonlinear fluence dependence of the OSE as a function of the drive photon frequency. Our findings reveal crucial information on the unexplored many-body coherent interacting regime, making perovskite QDs suitable for room temperature quantum devices.

8.
Opt Lett ; 46(23): 5930-5933, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851926

RESUMEN

In this Letter, we demonstrate for the first time, to the best of our knowledge, NiCo2O4 (NCO) as a novel nonlinear optical material with straightforward potential applications in optical limiting. For the 532 nm nanosecond laser, excited state absorption (ESA) and free-carrier absorption give rise to large ESA coefficient (ßESA) and positive nonlinear n2. On the other hand, when excited with the 800 nm femtosecond laser, two-photon absorption (TPA) takes place, and bound carriers induce strong negative n2. The values of ß and n2 obtained for NCO are found to be higher compared to other conventional transition metal oxides and, therefore, are promising for optics and other photonics applications.

9.
Opt Lett ; 45(24): 6655-6658, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33325863

RESUMEN

In this Letter, we report for the first time, to the best of our knowledge, the anisotropic optical response in a graphene oxide (GO)-gold (Au) nanohybrid. Polarization-sensitive nonlinear optical absorption measurements revealed that nanohybrids are highly anisotropic, (ß⊥-ß‖)≈28cm/GW, which is more than one order of magnitude higher than that of control GO (2 cm/GW). The first-principle analysis of absorbance at nanohybrid interfaces with varying functional ligand concentrations corroborates with the experimentally observed intrinsic linear anisotropy. Thus, this Letter enables new routes to realize smart and high-performing nonlinear optical systems selectively and directionally such as tunable optical limiters and optical data processing devices.

10.
ACS Appl Mater Interfaces ; 12(39): 44345-44359, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32864953

RESUMEN

The interface of transition-metal dichalcogenides (TMDCs) and high-k dielectric transition-metal oxides (TMOs) had triggered umpteen discourses because of the indubitable impact of TMOs in reducing the contact resistances and restraining the Fermi-level pinning for the metal-TMDC contacts. In the present work, we focus on the unresolved tumults of large-area TMDC/TMO interfaces, grown by adopting different techniques. Here, on a pulsed laser-deposited MoS2 thin film, a layer of TiO2 is grown by atomic layer deposition (ALD) and pulsed laser deposition (PLD). These two different techniques emanate the layer of TiO2 with different crystallinities, thicknesses, and interfacial morphologies, subsequently influencing the electronic and optical properties of the interfaces. Contrasting the earlier reports of n-type doping at the exfoliated MoS2/TiO2 interfaces, the large-area MoS2/anatase-TiO2 films had realized a p-type doping of the underneath MoS2, manifesting a boost in the extent of p-type doping with increasing thickness of TiO2, as emerged from the X-ray photoelectron spectra. Density functional analysis of the MoS2/anatase-TiO2 interfaces, with pristine and interfacial defect configurations, could correlate the interdependence of doping and the terminating atomic surface of TiO2 on MoS2. The optical properties of the interface, encompassing photoluminescence, transient absorption and z-scan two-photon absorption, indicate the presence of defect-induced localized midgap levels in MoS2/TiO2 (PLD) and a relatively defect-free interface in MoS2/TiO2 (ALD), corroborating nicely with the corresponding theoretical analysis. From the investigation of optical properties, we indicate that the MoS2/TiO2 (PLD) interface may act as a promising saturable absorber, having a significant nonlinear response for the sub-band-gap excitations. Moreover, the MoS2/TiO2 (PLD) interface had exemplified better phototransport properties. A potential application of MoS2/TiO2 (PLD) is demonstrated by the fabrication of a p-type phototransistor with the ionic-gel top gate. This endeavor to analyze and perceive the MoS2/TiO2 interface establishes the prospectives of large-area interfaces in the field of optics and optoelectronics.

11.
Phys Chem Chem Phys ; 22(28): 16314-16324, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32647839

RESUMEN

A higher superconducting critical temperature and large-area epsilon-near-zero systems are two long-standing goals of the scientific community, having an explicit relationship with the correlated electrons in localized orbitals. Motivated by the recent experimental findings of the strongly correlated phenomena in nanostructures of simple Drude metallic systems, we have theoretically investigated some potential bimetallic FCC combinations having close resemblance with the experimental systems. The explored systems include the large-area interface to the embedded and doped two-dimensional (2D) combinatorial nanostructures. Using different effective single-particle first-principles approaches encompassing density functional theory (DFT), time-dependent DFT (TDDFT), phonon and DFT-coupled quantum transport, we propose some interesting correlated prospects of potential bimetallic nanostructures like Au/Ag and Pt/Pd. For the 2D doped and embedded nanostructures of these systems, the DFT-calculated non-trivial band-structures indicate the interfacial morphology-induced band localization. The calculated Fermi-surface topology of the nanostructures and the corresponding nesting behavior may be emblematic to the presence of instabilities, such as charge density waves. The optical attributes extracted from the TDDFT calculations result in near-zero behavior of both real and imaginary parts of the dynamical dielectric response in the ultra-violet to visible (UV-Vis) optical range. In addition, low-energy intra-band plasmonic oscillations, as present for individual metallic surfaces, are completely suppressed for the embedded and doped nanostructures. The TDDFT-derived electron-energy loss spectra manifest the survival of only inter-band transitions. The presence of soft phonons and dynamic instabilities is observed from the phonon-dispersion of the nanostructured systems. Quantum transport calculations on the simplest possible device made out of these bimetallic systems reveal the generation of highly transmitting pockets over the cross-sectional area for some selected device geometry. We envisage that, if scrutinized experimentally, such systems may unveil many fascinating interdisciplinary aspects of orbital chemistry, physics and optics, promoting their relevant applications in many diverse fields.

12.
Opt Lett ; 44(12): 3134-3137, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199399

RESUMEN

Highly reproducible and precisely controlled gradual variation in optical reflectivity or electrical resistance between amorphous and crystalline phases of phase change (PC) material is a key requirement for multilevel programming. Here we report high-contrast multilevel set and reset operations through accumulative switching in growth-dominated AgInSbTe PC material using a nanosecond laser-based pump-probe technique. The precise tuning of fractions of crystallized or re-amorphized region is achieved by means of controlling the number of irradiated laser pulses enabling six stable multilevels with high-reflectivity contrast of 2% between any two states. Furthermore, Raman spectra of irradiated spots validate the structural changes involved during multilevel switching between amorphous and crystalline phases.

13.
Opt Lett ; 43(19): 4787-4790, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272740

RESUMEN

We study experimentally and theoretically the intensity-dependent off-resonant ultrafast third-order nonlinear optical response of As2S2 thin films. At low intensity, we observed saturable absorption with a negative (self-defocusing) nonlinear refractive index (n2) which at higher intensity switched over to reverse saturable absorption with a change in the sign of n2 to positive (self-focusing). Our findings constitute compelling evidence on how to dynamically tune the optical response with the intensity that has its origin in the combined effect of two-photon absorption and Pauli blocking. The results were explained with the help of time-resolved measurements and rigorous theoretical and numerical simulations.

14.
Appl Opt ; 57(2): 178-184, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29328161

RESUMEN

Rapid and reversible switching between amorphous and crystalline phases of phase-change material promises to revolutionize the field of information processing with a wide range of applications including electronic, optoelectronics, and photonic memory devices. However, achieving faster crystallization is a key challenge. Here, we demonstrate femtosecond-driven transient inspection of ultrafast crystallization of as-deposited amorphous Ge1Sb2Te4 and Ge1Sb4Te7 thin films induced by a series of 120 fs laser pulses. The snapshots of phase transitions are correlated with the time-resolved measurements of change in the absorption of the samples. The crystallization is attributed to the reiterative excitation of an intermediate state with subcritical nuclei at a strikingly low fluence of 3.19 mJ/cm2 for Ge1Sb2Te4 and 1.59 mJ/cm2 for Ge1Sb4Te7. Furthermore, 100% volumetric crystallization of Ge1Sb4Te7 was achieved with the fluence of 4.78 mJ/cm2, and also reamorphization is seen for a continuous stimulation at the same repetition rate and fluence. A systematic confirmation of structural transformations of all samples is validated by Raman spectroscopic measurements on the spots produced by the various excitation fluences.

15.
Angew Chem Int Ed Engl ; 56(45): 14187-14191, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28906065

RESUMEN

Herein we report the colloidal synthesis of Cs3 Sb2 I9 and Rb3 Sb2 I9 perovskite nanocrystals, and explore their potential for optoelectronic applications. Different morphologies, such as nanoplatelets and nanorods of Cs3 Sb2 I9 , and spherical Rb3 Sb2 I9 nanocrystals were prepared. All these samples show band-edge emissions in the yellow-red region. Exciton many-body interactions studied by femtosecond transient absorption spectroscopy of Cs3 Sb2 I9 nanorods reveals characteristic second-derivative-type spectral features, suggesting red-shifted excitons by as much as 79 meV. A high absorption cross-section of ca. 10-15  cm2 was estimated. The results suggest that colloidal Cs3 Sb2 I9 and Rb3 Sb2 I9 nanocrystals are potential candidates for optical and optoelectronic applications in the visible region, though a better control of defect chemistry is required for efficient applications.

16.
Opt Lett ; 42(17): 3291-3294, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957086

RESUMEN

In this Letter, we demonstrate for the first time that anisotropy can be induced at ultrafast time scales in an otherwise isotropic a-GeSe2 thin film using polarized femtosecond light. This photoinduced anisotropy (PA) spans the bandgap to the sub-bandgap region and self-annihilates over picosecond time scales. The ultrafast decay rate of PA is a clear indication that the observed effect is due to photoinduced transient defects in the sub-bandgap region and associated structural rearrangement in the near-bandgap region.

17.
Opt Lett ; 42(13): 2503-2506, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957269

RESUMEN

We report here femtosecond laser-driven transient snapshots of ultrafast crystallization of Ge2Sb2Te5 films from its as-deposited amorphous phase, and the local structural change is validated by micro-Raman spectroscopy and x-ray diffraction. The decay time constant of ∼5 ps in transient spectra with a precise temporal resolution using 400 nm (pump) reveals about 68 volumetric percentage crystallization at a remarkably low fluence of 4.78 mJ·cm-2. This is attributed to reiterated excitation after a complete carrier relaxation and formation of a long-lasting transient phase at sub-threshold fluences. Furthermore, Raman spectra of irradiated spots confirm defective-octahedral modes at 110 and 160 cm-1 validating crystallization.

18.
Opt Lett ; 41(9): 2049-52, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27128071

RESUMEN

One-dimensional (1D) free-standing nanowires are particularly important for carrier confinement in two dimensions, which provides a platform to explore the nonlinear optical phenomena at the nanoscale. In this Letter, we demonstrate saturable absorption in the resonant and above-bandgap excitations of both ns and fs pulses in 1D crystalline Sb2Se3 nanowires prepared by the facile hydrothermal method. Impressively, the average length of the nanowires extends to a few micrometers with a high aspect ratio of 300. The excited-state to ground-state absorption cross-section ratio in Sb2Se3 nanowires is ≈0.23, which suggests that they can be utilized as passive mode lockers.

19.
Opt Lett ; 40(19): 4512-5, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26421569

RESUMEN

In this Letter, we report for the first time, to the best of our knowledge, continuous-wave laser background illumination (BGI) as a simple and yet useful tool to tune nanosecond transient absorption (TA) in a-Ge25As10Se65 thin films. In our experiments, we observed remarkable blueshift in TA as a function of the BGI intensity. Strikingly, relaxations of TA in background-illuminated samples are much faster than the as-prepared samples. This observation provides new insights into the bond-breaking mechanism. Further, decay time constants of TA are wavelength dependent, which signifies that excited carriers have a longer lifetime in deep traps than in shallow traps.

20.
Opt Express ; 23(11): 14085-94, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072777

RESUMEN

In this article, we experimentally demonstrate for the first time that photobleaching (PB) can be induced in morphologically disordered a-Se thin film, an observation which is opposite of the previously well-known photodarkening (PD) effects in morphologically ordered films. Further, the optical response of the film shows many fold increase with increase in control beam intensity. To explain the observed extraordinary phenomenon, we have proposed a model based on the morphological disorder of a modified surface and its subsequent photo-annealing. Our results demonstrate an efficient and yet simple new method to engineer the optical response of photosensitive thin films. We envision that this process can open up many avenues in optical field-enhanced absorption-based technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...