Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 10(13): 7585-7599, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35492198

RESUMEN

The corrosion inhibitive capabilities of some ferrocene-based Schiff bases on aluminium alloy AA2219-T6 in acidic medium were investigated using Tafel polarization, electrochemical impedance spectroscopy (EIS), weight loss measurement, FT-IR spectroscopy and scanning electron microscopic (SEM) techniques. The influence of molecular configuration on the corrosion inhibition behavior has been explored by quantum chemical calculation. Ferrocenyl Schiff bases 4,4'-((((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcua), 4,4'-((((ethane-1,2-diylbis(oxy))bis(2-methoxy-1,4-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcub) and 4,4'-((((ethane-1,2-diylbis(oxy))bis(2-ethoxy-1,4-phenylene))bis(methaneylylidene))bis(azaneylylidene))bisferrocene (Fcuc) have been synthesized and characterized by FT-IR, 1H and 13C NMR spectroscopic studies. These compounds showed a substantial corrosion inhibition against aluminium alloy in 0.1 M of HCl at 298 K. Fcub and Fcuc showed better anticorrosion efficiency as compared with Fcua due to the electron donating methoxy and ethoxy group substitutions, respectively. Polarization curves also indicated that the studied biferrocenyl Schiff bases were mixed type anticorrosive materials. The inhibition of the aluminium alloy surface by biferrocenyl Schiff bases was evidenced through scanning electron microscopy (SEM) studies. Semi-empirical quantum mechanical studies revealed a correlation between corrosion inhibition efficiency and structural functionalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA