Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038874

RESUMEN

This study examined the surface morphology and photocatalytic activity of nickel oxide (NiO) nanoparticles prepared through a chemical method. The synthesized nanoparticle was characterized by using spectroscopic and microscopic techniques. Photocatalytic degradation of hazardous Eriochrome Black T (EBT) was carried out using the synthesized nanoparticle and the efficiency of the NiO used was determined. Highest degradation efficiency of 70% at 25 mg loading was observed at 40 min exposure time. The study concluded that the synthesized nanoparticles could be used in industrial wastewater treatment containing organic dyes.

2.
Heliyon ; 8(10): e10835, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36262296

RESUMEN

Herein, we report the electropolymerization of crystal violet (CRV) on a bare glassy carbon electrode (GCE) for the detection of adrenaline (AD). Electropolymerization parameters such as electrolyte pH, scan rate and monomer concentrations were optimized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The characterization of CRV and poly(crystal violet) (PCV) was done using FT-IR, UV-visible spectroscopy and EIS. More importantly, the charge transfer resistance (Rct) and other EIS data recorded from the EIS of various forms of the poly(crystal violet) (PCV) modified glassy carbon electrode (GCE) in AD were used for identifying the best PCV modified electrode. Subsequent application of the electrode prepared at optimum conditions (PGCE) for AD detection using the square wave voltammetry (SWV) gave a limit of detection (LOD) of 2.86 µM over a linear range of 10.3-102.7 µM. This sensor also showed considerable stability, good AD recovery from the real sample (98.9%), and excellent reproducibility, making it a suitable analytical tool for AD detection at the micromolar level.

3.
J Fluoresc ; 32(6): 2223-2236, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36042154

RESUMEN

Graphene quantum dots which are known as zero-dimensional materials are gaining increasing attention from researchers all over the world. This is predicated upon their relatively unique chemiluminescent, fluorescent, electrochemiluminescent, and electronic properties. The precise mechanism of electrochemiluminescence continues to be a subject of debate in the research world, and this is important in identifying synthetic pathways for graphene quantum dots. Heavy metals and other emerging pollutants are global health and environmental concerns. Several studies have reported the sensitivity and limit of detection of graphene quantum dots up to the nano-, pico-, and femto- levels when used as sensors. This review seeks to bridge information gaps on the reported electrochemiluminescence chemosensors for emerging pollutants using graphene quantum dots under the sub-headings, synthesis, characterization, electrochemiluminescence chemosensor detection, and comparison with other detection methods.


Asunto(s)
Técnicas Biosensibles , Contaminantes Ambientales , Grafito , Metales Pesados , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos
4.
ACS Omega ; 6(29): 18548-18558, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34337195

RESUMEN

Nanodiamond (ND) is a class of carbon nanomaterial with covalently connected sp3 carbon atoms in its core and an sp2 carbon adorned surface via edge defects or doping. Endogenous chemicals that provoke physiological responses in the human system called neurotransmitters (NTs) have been detected with several sensors with carbon-based nanomaterials. Nanodiamonds (NDs), another class of carbon nanomaterial, have shown the requisite surface area and electrocatalytic activity toward NTs in the past decade. Surprisingly, only a few electrochemical ND based NT sensors are available. This work briefly looked into the performance of the available sensors, NT and ND interactions, and the possible reason for data paucity on the subject matter.

5.
Materials (Basel) ; 14(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557284

RESUMEN

This report narrates the successful application of a fabricated novel sensor for the trace detection of endosulfan (EDS). The sensor was made by modifying a glassy-carbon electrode (GCE) with polyaniline (PANI), chemically synthesized antimony oxide nanoparticles (AONPs), acid-functionalized, single-walled carbon nanotubes (fSWCNTs), and finally, the AONP-PANI-SWCNT nanocomposite. The electrochemical properties of the modified electrodes regarding endosulfan detection were investigated via cyclic voltammetry (CV) and square-wave voltammetry. The current response of the electrodes to EDS followed the trend GCE-AONP-PANI-SWCNT (-510 µA) > GCE-PANI (-59 µA) > GCE-AONPs (-11.4 µA) > GCE (-5.52 µA) > GCE-fSWCNTs (-0.168 µA). The obtained results indicated that the current response obtained at the AONP-PANI-SWCNT/GCE was higher with relatively low overpotential compared to those from the other electrodes investigated. This demonstrated the superiority of the AONP-PANI-SWCNT-modified GCE. The AONP-PANI-SWCNT/GCE demonstrated good electrocatalytic activities for the electrochemical reduction of EDS. The results obtained in this study are comparable with those in other reports. The sensitivity, limit of detection (LoD), and limit of quantification (LoQ) of AONP-PANI-SWCNT/GCE towards EDS was estimated to be 0.0623 µA/µM, 6.8 µM, and 20.6 µM, respectively. Selectivity, as well as the practical application of the fabricated sensor, were explored, and the results indicated that the EDS-reduction current was reduced by only 2.0% when interfering species were present, whilst average recoveries of EDS in real samples were above 97%.

6.
Biosensors (Basel) ; 10(11)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142771

RESUMEN

Imbalance in the levels of monoamine neurotransmitters have manifested in severe health issues. Electrochemical sensors have been designed for their determination, with good sensitivity recorded. Carbon-based quantum dots have proven to be an important component of electrochemical sensors due to their high conductivity, low cytotoxicity and opto-electronic properties. The quest for more sensitive electrodes with cheaper materials led to the development of electrochemical sensors based on carbon-based quantum dots for the detection of neurotransmitters. The importance of monoamine neurotransmitters (NTs) and the good electrocatalytic activity of carbon and graphene quantum dots (CQDs and GQDs) make the review of the efforts made in the design of such sensors for monoamine NTs of huge necessity. The differences and the similarities between these two quantum dots are highlighted prior to a discussion of their application in electrochemical sensors over the last ten years. Compared to other monoamine NTs, dopamine (DA) was the most studied with GQDs and CQD-based electrochemical sensors.


Asunto(s)
Técnicas Biosensibles , Neurotransmisores , Puntos Cuánticos , Carbono , Técnicas Electroquímicas , Grafito , Límite de Detección
7.
Front Chem ; 7: 89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30859097

RESUMEN

In this study, electrochemical nanosensors were developed from the synthesized metal oxide (MO) nanoparticles by supporting it on a gold electrode (Au). The activity of the developed nanosensor toward the detection of malaria biomarker (ß-hematin) was determined and the optimum conditions at which the maximum detection and quantification occurred were established. ß-Hematin current response at the sensors was higher when compared with the bare Au electrode and followed the order Au-CuO (C) > Au-CuO (M) > Au-Fe2O3 (M) > Au-Fe2O3 (C) > Au-Al2O3 (M) > Au-Al2O3 (C) > bare Au. The developed sensors were stable with a relatively low current drop (10.61-17.35 %) in the analyte. Au-CuO sensor had the best performance toward the biomarker and quantitatively detected P. berghei in infected mice's serum samples at 3.60-4.8 mM and P. falciparum in human blood serum samples at 0.65-1.35 mM concentration.

8.
Front Chem ; 6: 423, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30298128

RESUMEN

This work describes the chemical synthesis of antimony oxide nanoparticles (AONPs), polyaniline (PANI), acid functionalized single-walled carbon nanotubes (fSWCNTs), and the nanocomposite (AONP-PANI-SWCNT) as catalyst for the trace detection of lindane. Successful synthesis of the nanomaterials was confirmed by Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD) spectroscopy, and scanning electron microscopy (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for investigating the electrochemical behavior of the modified electrodes in the ferrocyanide/ferricyanide ([Fe(CN)6]4-/[Fe(CN)6]3-) redox probe. GCE-AONP-PANI-SWCNT exhibited faster electron transport properties as well as higher electroactivity as compared to bare-GCE, GCE-AONPs, GCE-PANI, and GCE-SWCNT electrodes. Electrocatalytic studies further showed that GCE-AONP-PANI-SWCNT modified electrode was stable (after 20 scans) with only a small current drop in lindane (0.57%). The GCE-AONP-PANI-SWCNT electrode with low detection limit of 2.01 nM performed better toward the detection of lindane as compared to other studies in literature. The GCE-AONP-PANI-SWCNT electrode is highly selective toward the detection of lindane in the presence of various organic and inorganic interfering species. Real sample analysis of river water and tap water samples using the developed sensor gave satisfactory percentage recoveries therefore confirming the potential of the proposed sensor for practical application.

9.
Materials (Basel) ; 10(10)2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934145

RESUMEN

This study reports the synthesis and comparative investigation of the substituent effects of a new series of highly luminescent homoleptic tris-cyclometalated iridium(III) complexes of the type [Ir(N˄C)3]. These are based on two ligand type derivatives comprising of 4-fluorophenylvinylquinolines and 4-methoxyphenylvinylquinolines with electron-donating and/or electron-withdrawing groups as aryl substituents at 2-position. The structures of the ligands and their complexes were characterized by means of FT-IR, UV-Vis and NMR spectrometry complemented with photoluminescence and cyclic voltammetry. The photophysical properties of 2-aryl-4-(4-fluorophenylvinyl)quinoline and its corresponding complex were also studied using the density functional theory method. The photoluminescent properties of the ligands and the corresponding complexes showed high fluorescent intensities and quantum yields in solvents of different polarities. The photoluminescence spectra of the complexes in solid film, showed common transmission curves at longer wavelengths maximum (λem = 697 nm) possibly originating from the interference of scattered light of higher-order transmission of monochromators.

10.
Sci Rep ; 7: 43181, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256521

RESUMEN

The electrocatalytic properties of metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75 µM) which compared favourably with literature, good sensitivity (1.45 µA/µM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ.


Asunto(s)
Técnicas de Química Analítica/métodos , Dopaminérgicos/análisis , Indoles/metabolismo , Nanopartículas del Metal , Nanotubos de Carbono , Isoindoles , Sensibilidad y Especificidad
11.
Sci Rep ; 6: 26938, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27245690

RESUMEN

Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56-5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 µM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 µM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples.


Asunto(s)
Técnicas Electroquímicas , Epinefrina/análisis , Indoles/química , Nanopartículas del Metal/química , Nanotubos de Carbono/química , Norepinefrina/análisis , Ácido Ascórbico/química , Electrodos , Compuestos Férricos/química , Vidrio/química , Humanos , Concentración de Iones de Hidrógeno , Isoindoles , Nanopartículas del Metal/ultraestructura , Nanotubos de Carbono/ultraestructura , Oxidación-Reducción , Soluciones , Óxido de Zinc/química
12.
Materials (Basel) ; 9(2)2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-28787909

RESUMEN

The macrocylic ligand, 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane (MHACD) was synthesized by the demetallation of its freshly synthesized Ni(II) complex (NiMHACD). Successful synthesis of NiMHACD and the free ligand (MHACD) was confirmed by various characterization techniques, including Fourier transform infra-red (FT-IR), proton nuclear magnetic resonance (¹H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), ultraviolet-visible (UV-vis), and energy dispersive x-ray (EDX) spectroscopic techniques. The anti-bacteria activities of MHACD were investigated against Staphylococcus aureus and Enterococcus species and the results showed that MHACD possesses a spectrum of activity against the two bacteria. The electrochemical cyclic voltammetry study on MHACD revealed that it is a redox active compound with promising catalytic properties in electrochemical applications. The inhibition potential of MHACD for mild steel corrosion in 1 M HCl was investigated using potentiodynamic polarization method. The results showed that MHACD inhibits steel corrosion as a mixed-type inhibitor, and the inhibition efficiency increases with increasing concentration of MHACD. The adsorption of MHACD obeys the Langmuir adsorption isotherm; it is spontaneous and involves competitive physisorption and chemisorption mechanisms. Quantum chemical calculations revealed that the energy of the highest occupied molecular orbital (HOMO) of MHACD is high enough to favor forward donation of charges to the metal during adsorption and corrosion inhibition. Natural bond orbital (NBO) analysis revealed the presence of various orbitals in the MHACD that are capable of donating or accepting electrons under favorable conditions.

13.
Molecules ; 20(9): 15701-34, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26343626

RESUMEN

The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I(-) ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the quantum chemical parameters obtained with B3LYP/6-31G (d,p) method show that a combination of two quantum chemical parameters to form a composite index provides the best correlation with the experimental data.


Asunto(s)
Aluminio/química , Ácido Clorhídrico/química , Indoles/química , Yoduros/química , Porfirinas/química , Corrosión , Electroquímica , Iones/química , Relación Estructura-Actividad Cuantitativa , Teoría Cuántica , Soluciones , Termodinámica
14.
Molecules ; 20(9): 16004-29, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26364631

RESUMEN

The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.


Asunto(s)
Electroquímica/métodos , Yoduros/química , Adsorción , Colorantes/química , Sinergismo Farmacológico , Estructura Molecular
15.
Molecules ; 20(8): 15122-46, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26295223

RESUMEN

The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and µ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.


Asunto(s)
Simulación por Computador , Electroquímica , Método de Montecarlo , Porfirinas/química , Relación Estructura-Actividad Cuantitativa , Teoría Cuántica , Cloruro de Sodio/química , Acero/química , Adsorción , Corrosión , Espectroscopía Dieléctrica , Electrones , Microscopía Electrónica de Rastreo , Soluciones , Termodinámica
16.
Toxicol Rep ; 1: 243-251, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-28962242

RESUMEN

This work assessed levels of heavy metals exposure from silver coatings of mobile phones recharge cards of three major companies (designated as A, B and C) with price denominations 100, 200 and 400 from companies A, B and C respectively, which were carefully scratched using a plastic scraper into a glass tube. The coatings were acid digested for total metal concentration, while speciation experiment for Mn, Cu, Cd and Pb was carried out. Total metals and speciation analysis were done using AAS and XRF techniques. The total metal concentration from XRF analysis was in the range: Ca (70-2140 µg/g), K (20-4930 µg/g), Sc (80-270 µg/g), Ti (1530-12,580 µg/g), Fe (50-6660 µg/g), Ni (20-2040 µg/g), Cu (20-850 µg/g) and Zn (40-460 µg/g). Cr had the lowest concentration (10 µg/g) in A ( 400) while Ti had the highest concentration (12,580 µg/g) in C ( 500) for all the coatings analyzed. AAS and XRF results agreed closely except for Fe with higher concentration. A ( 100) contained high concentration of the metals compared with others. Speciation study identified Mn as the most mobile element when present in the environment.

17.
Colloids Surf B Biointerfaces ; 95: 186-94, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22475526

RESUMEN

Edged plane pyrolytic graphite electrode (EPPGE) was modified with and without Prussian blue (PB) nanoparticles and polyaminobenzene sulphonated single-walled carbon nanotubes (SWCNTPABS) using the chemical deposition method. The electrodes were characterised using microscopy, spectroscopy and electrochemical techniques. Results showed that edged plane pyrolytic graphite-single-walled carbon nanotubes-prussian blue (EPPGE-SWCNT-PB) electrode gave the best dopamine (DA) current response, which increases with increasing PB layers. The catalytic rate constant of 1.69 × 10(5)mol(-1)cm(3)s(-1), Tafel value of 112 mV dec(-1), and limit of detection of DA (2.8 nM) were obtained. Dopamine could be simultaneously detected with ascorbic acid. The electrode was found to be electrochemically stable, reusable and can be used for the analysis of DA in real drug samples.


Asunto(s)
Dopamina/análisis , Ferrocianuros/química , Nanopartículas/química , Nanotubos de Carbono/química , Polímeros/química , Ácidos Sulfanílicos/química , Catálisis , Electroquímica , Electrodos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...