Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(1): 010602, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976683

RESUMEN

The study of thermal operations allows one to investigate the ultimate possibilities of quantum states and of nanoscale thermal machines. Whilst fairly general, these results typically do not apply to continuous variable systems and do not take into account that, in many practically relevant settings, system-environment interactions are effectively bilinear. Here we tackle these issues by focusing on Gaussian quantum states and channels. We provide a complete characterization of the most general Gaussian thermal operation acting on an arbitrary number of bosonic modes, which turn out to be all embeddable in a Markovian dynamics, and derive necessary and sufficient conditions for state transformations under such operations in the single-mode case, encompassing states with nonzero coherence in the energy eigenbasis (i.e., squeezed states). Our analysis leads to a no-go result for the technologically relevant task of algorithmic cooling: We show that it is impossible to reduce the entropy of a system coupled to a Gaussian environment below its own or the environmental temperature, by means of a sequence of Gaussian thermal operations interspersed by arbitrary (even non-Gaussian) unitaries. These findings establish fundamental constraints on the usefulness of Gaussian resources for quantum thermodynamic processes.

2.
Phys Rev Lett ; 116(7): 070402, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26943512

RESUMEN

We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.

3.
Phys Rev Lett ; 111(25): 250401, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24483731

RESUMEN

Correlations in quantum systems exhibit a rich phenomenology under the effect of various sources of noise. We investigate theoretically and experimentally the dynamics of quantum correlations and their classical counterparts in two nuclear magnetic resonance setups, as measured by geometric quantifiers based on trace norm. We consider two-qubit systems prepared in Bell diagonal states, and perform the experiments in real decohering environments resulting from Markovian local noise which preserves the Bell diagonal form of the states. We then report the first observation of environment-induced double sudden transitions in the geometric quantum correlations, a genuinely nonclassical effect not observable in classical correlations. The evolution of classical correlations in our physical implementation reveals in turn the finite-time relaxation to a pointer basis under nondissipative decoherence, which we characterize geometrically in full analogy with predictions based on entropic measures.

4.
Phys Rev Lett ; 110(4): 040503, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25166146

RESUMEN

We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

5.
Phys Rev Lett ; 110(14): 140501, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-25166969

RESUMEN

We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance setup and employing geometric discord, we evaluate the quantum correlations of a state without resorting to prior knowledge of its density matrix. The method is applicable to any 2 ⊗ d system and provides, in terms of number of measurements required, an advantage over full state tomography scaling with the dimension d of the unmeasured subsystem. The negativity of quantumness is measured as well for reference. We also observe the phenomenon of sudden transition of quantum correlations when local phase and amplitude damping channels are applied to the state.

6.
J Nanosci Nanotechnol ; 12(9): 7545-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035513

RESUMEN

Using atomic force microscopy, we have studied the surface structures of high quality molecular beam epitaxy grown (Ga, Mn)As compound. Several samples with different thickness and Mn concentration, as well as a few (Ga, Mn)(As, P) samples have been investigated. All these samples have shown the presence of periodic ripples aligned along the [110] direction. From a detailed Fourier analysis we have estimated the period (-50 nm) and the amplitude of these structures.

7.
Nat Mater ; 7(12): 947-52, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18931673

RESUMEN

Nanocrystalline materials offer very high strength but are typically limited in their strain to failure, and efforts to improve deformability in these materials are usually found to be at the expense of strength. Using a combination of quantitative in situ compression in a transmission electron microscope and finite-element analysis, we show that the mechanical properties of nanoparticles can be directly measured and interpreted on an individual basis. We find that nanocrystalline CdS synthesized into a spherical shell geometry is capable of withstanding extreme stresses (approaching the ideal shear strength of CdS). This unusual strength enables the spherical shells to exhibit considerable deformation to failure (up to 20% of the sphere's diameter). By taking into account the structural hierarchy intrinsic to novel nanocrystalline materials such as this, we show it is possible to achieve and characterize the ultrahigh stresses and strains that exist within a single nanoparticle during deformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...