Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(29): 35227-35238, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37449957

RESUMEN

This study investigates the solid-state charge transport properties of the oxidized forms of dioxythiophene-based alternating copolymers consisting of an oligoether-functionalized 3,4-propylenedioxythiophene (ProDOT) copolymerized with different aryl groups, dimethyl ProDOT (DMP), 3,4-ethylenedioxythiophene (EDOT), and 3,4-phenylenedioxythiophene (PheDOT), respectively, to yield copolymers P(OE3)-D, P(OE3)-E, and P(OE3)-Ph. At a dopant concentration of 5 mM FeTos3, the electrical conductivities of these copolymers vary significantly (ranging between 9 and 195 S cm-1) with the EDOT copolymer, P(OE3)-E, achieving the highest electrical conductivity. UV-vis-NIR and X-ray spectroscopies show differences in both susceptibility to oxidative doping and extent of oxidation for the P(OE3) series, with P(OE3)-E being the most doped. Wide-angle X-ray scattering measurements indicate that P(OE3)-E generally demonstrates the lowest paracrystallinity values in the series, as well as relatively small π-π stacking distances. The significant (i.e., order of magnitude) increase in electrical conductivity of doped P(OE3)-E films versus doped P(OE3)-D or P(OE3)-Ph films can therefore be attributed to P(OE3)-E exhibiting both the highest carrier ratios in the P(OE3) series, along with good π-π overlap and local ordering (low paracrystallinity values). Furthermore, these trends in the extent of doping and paracrystallinity are consistent with the reduced Fermi energy level and transport function prefactor parameters calculated using the semilocalized transport (SLoT) model. Observed differences in carrier ratios at the transport edge (ct) and reduced Fermi energies [η(c)] suggest a broader electronic band (better overlap and more delocalization) for the EDOT-incorporating P(OE3)-E polymer relative to P(OE3)-D and P(OE3)-Ph. Ultimately, we rationalize improvements in electrical conductivity due to microstructural and doping enhancements caused by EDOT incorporation, a structure-property relationship worth considering in the future design of highly electrically conductive systems.

2.
Angew Chem Int Ed Engl ; 62(1): e202211600, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36269867

RESUMEN

Herein, a route to produce highly electrically conductive doped hydroxymethyl functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films, termed PEDOT(OH) with metal-like charge transport properties using a fully solution processable precursor polymer is reported. This is achieved via an ester-functionalized PEDOT derivative [PEDOT(EHE)] that is soluble in a range of solvents with excellent film-forming ability. PEDOT(EHE) demonstrates moderate electrical conductivities of 20-60 S cm-1 and hopping-like (i.e., thermally activated) transport when doped with ferric tosylate (FeTos3 ). Upon basic hydrolysis of PEDOT(EHE) films, the electrically insulative side chains are cleaved and washed from the polymer film, leaving a densified film of PEDOT(OH). These films, when optimally doped, reach electrical conductivities of ≈1200 S cm-1 and demonstrate metal-like (i.e., thermally deactivated and band-like) transport properties and high stability at comparable doping levels.

3.
ACS Appl Mater Interfaces ; 8(14): 8928-38, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27043205

RESUMEN

Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 µm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.


Asunto(s)
Proteínas Sanguíneas/química , Adhesión Celular/efectos de los fármacos , Coinfección/terapia , Nanofibras/química , Adsorción , Coinfección/microbiología , Escherichia coli/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Metacrilatos/química , Metacrilatos/uso terapéutico , Nanofibras/uso terapéutico , Poliésteres/química , Poliésteres/uso terapéutico , Polietilenglicoles/química , Polietilenglicoles/uso terapéutico , Ácidos Polimetacrílicos , Porosidad
4.
Polym Chem ; 6(31): 5683-5692, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26604990

RESUMEN

Polymeric fibers have drawn recent interest for uses in biomedical technologies that span drug delivery, regenerative medicine, and wound-healing patches, amongst others. We have recently reported a new class of fibrous biomaterials fabricated using coextrusion and a photochemical modification procedure to introduce functional groups onto the fibers. In this report, we extend our methodology to control surface modification density, describe methods to synthesize multifunctional fibers, and provide methods to spatially control functional group modification. Several different functional fibers are reported for bioconjugation, including propargyl, alkene, alkoxyamine, and ketone modified fibers. The modification scheme allows for control over surface density and provides a handle for downstream functionalization with appropriate bioconjugation chemistries. Through the use of multiple orthogonal chemistries, fiber chemistry could be differentially controlled to append multiple modifications. Spatial control on the fiber surface was also realized, leading to reverse gradients of small molecule dyes. One application is demonstrated for pH-responsive drug delivery of an anti-cancer therapeutics. Finally, the introduction of orthogonal chemical modifications onto these fibers allowed for modification with multiple cell-responsive peptides providing a substrate for osteoblast differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...