Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Invest Dermatol ; 144(2): 252-262.e4, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37598867

RESUMEN

Tissue transcriptomics is used to uncover molecular dysregulations underlying diseases. However, the majority of transcriptomics studies focus on single diseases with limited relevance for understanding the molecular relationship between diseases or for identifying disease-specific markers. In this study, we used a normalization approach to compare gene expression across nine inflammatory skin diseases. The normalized datasets were found to retain differential expression signals that allowed unsupervised disease clustering and identification of disease-specific gene signatures. Using the NS-Forest algorithm, we identified a minimal set of biomarkers and validated their use as diagnostic disease classifier. Among them, PTEN was identified as being a specific marker for cutaneous lupus erythematosus and found to be strongly expressed by lesional keratinocytes in association with pathogenic type I IFNs. In fact, PTEN facilitated the expression of IFN-ß and IFN-κ in keratinocytes by promoting activation and nuclear translocation of IRF3. Thus, cross-comparison of tissue transcriptomics is a valid strategy to establish a molecular disease classification and to identify pathogenic disease biomarkers.


Asunto(s)
Dermatitis , Lupus Eritematoso Cutáneo , Lupus Eritematoso Sistémico , Humanos , Biomarcadores/metabolismo , Dermatitis/patología , Perfilación de la Expresión Génica , Queratinocitos/metabolismo , Lupus Eritematoso Cutáneo/diagnóstico , Lupus Eritematoso Cutáneo/genética , Lupus Eritematoso Cutáneo/metabolismo , Lupus Eritematoso Sistémico/genética , Fosfohidrolasa PTEN/genética , Piel/patología
2.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37390046

RESUMEN

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Asunto(s)
Encéfalo , Neurociencias , Animales , Humanos , Ratones , Ecosistema , Neuronas
3.
Sci Rep ; 13(1): 9567, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311768

RESUMEN

With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classification of these spatially-resolved cells can be inferred by matching the spatial transcriptomics data to reference atlases derived from single cell RNA-sequencing (scRNA-seq) in which cell types are defined by differences in their gene expression profiles. However, robust cell type matching of the spatially-resolved cells to reference scRNA-seq atlases is challenging due to the intrinsic differences in resolution between the spatial and scRNA-seq data. In this study, we systematically evaluated six computational algorithms for cell type matching across four image-based spatial transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the same mouse primary visual cortex (VISp) brain region. We find that many cells are assigned as the same type by multiple cell type matching algorithms and are present in spatial patterns previously reported from scRNA-seq studies in VISp. Furthermore, by combining the results of individual matching strategies into consensus cell type assignments, we see even greater alignment with biological expectations. We present two ensemble meta-analysis strategies used in this study and share the consensus cell type matching results in the Cytosplore Viewer ( https://viewer.cytosplore.org ) for interactive visualization and data exploration. The consensus matching can also guide spatial data analysis using SSAM, allowing segmentation-free cell type assignment.


Asunto(s)
Corteza Visual Primaria , Transcriptoma , Animales , Ratones , Hibridación Fluorescente in Situ , Perfilación de la Expresión Génica , Algoritmos
5.
Sci Data ; 10(1): 50, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693887

RESUMEN

Large-scale single-cell 'omics profiling is being used to define a complete catalogue of brain cell types, something that traditional methods struggle with due to the diversity and complexity of the brain. But this poses a problem: How do we organise such a catalogue - providing a standard way to refer to the cell types discovered, linking their classification and properties to supporting data? Cell ontologies provide a partial solution to these problems, but no existing ontology schemas support the definition of cell types by direct reference to supporting data, classification of cell types using classifications derived directly from data, or links from cell types to marker sets along with confidence scores. Here we describe a generally applicable schema that solves these problems and its application in a semi-automated pipeline to build a data-linked extension to the Cell Ontology representing cell types in the Primary Motor Cortex of humans, mice and marmosets. The methods and resulting ontology are designed to be scalable and applicable to similar whole-brain atlases currently in preparation.


Asunto(s)
Ontologías Biológicas , Encéfalo , Animales , Humanos , Ratones , Callithrix , Recolección de Datos/normas
6.
PLoS One ; 17(9): e0275070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36149937

RESUMEN

With the advent of single cell/nucleus RNA sequencing (sc/snRNA-seq), the field of cell phenotyping is now a data-driven exercise providing statistical evidence to support cell type/state categorization. However, the task of classifying cells into specific, well-defined categories with the empirical data provided by sc/snRNA-seq remains nontrivial due to the difficulty in determining specific differences between related cell types with close transcriptional similarities, resulting in challenges with matching cell types identified in separate experiments. To investigate possible approaches to overcome these obstacles, we explored the use of supervised machine learning methods-logistic regression, support vector machines, random forests, neural networks, and light gradient boosting machine (LightGBM)-as approaches to classify cell types using snRNA-seq datasets from human brain middle temporal gyrus (MTG) and human kidney. Classification accuracy was evaluated using an F-beta score weighted in favor of precision to account for technical artifacts of gene expression dropout. We examined the impact of hyperparameter optimization and feature selection methods on F-beta score performance. We found that the best performing model for granular cell type classification in both datasets is a multinomial logistic regression classifier and that an effective feature selection step was the most influential factor in optimizing the performance of the machine learning pipelines.


Asunto(s)
Aprendizaje Automático , ARN , Humanos , Modelos Logísticos , ARN Nuclear Pequeño , Análisis de Secuencia de ARN/métodos , Máquina de Vectores de Soporte
7.
Bioinformatics ; 38(20): 4735-4744, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36018232

RESUMEN

MOTIVATION: Flow cytometry (FCM) and transcription profiling are the two widely used assays in translational immunology research. However, there is no data integration pipeline for analyzing these two types of assays together with experiment variables for biomarker inference. Current FCM data analysis mainly relies on subjective manual gating analysis, which is difficult to be directly integrated with other automated computational methods. Existing deconvolutional analysis of bulk transcriptomics relies on predefined marker genes in the transcriptomics data, which are unavailable for novel cell types and does not utilize the FCM data that provide canonical phenotypic definitions of the cell types. RESULTS: We developed a novel analytics pipeline-FastMix-for computational immunology, which integrates flow cytometry, bulk transcriptomics and clinical covariates for identifying cell type-specific gene expression signatures and biomarker genes. FastMix addresses the 'large p, small n' problem in the gene expression and flow cytometry integration analysis via a linear mixed effects model (LMER) for both cross-sectional and longitudinal studies. Its novel moment-based estimator not only reduces bias in parameter estimation but also is more efficient than iterative optimization. The FastMix pipeline also includes a cutting-edge flow cytometry data analysis method-DAFi-for identifying cell populations of interest and their characteristics. Simulation studies showed that FastMix produced smaller type I/II errors than competing methods. Validation using real data of two vaccine studies showed that FastMix identified a consistent set of signature genes as in independent single-cell RNA-seq analysis, producing additional interesting findings. AVAILABILITY AND IMPLEMENTATION: Source code of FastMix is publicly available at https://github.com/terrysun0302/FastMix. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Transcriptoma , Biomarcadores , Estudios Transversales , Análisis de Datos
8.
Sci Rep ; 12(1): 9996, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705694

RESUMEN

Reference cell atlases powered by single cell and spatial transcriptomics technologies are becoming available to study healthy and diseased tissue at single cell resolution. One important use of these data resources is to compare cell types from new dataset with cell types in the reference atlases to evaluate their phenotypic similarities and differences, for example, for identifying novel cell types under disease conditions. For this purpose, rigorously-validated computational algorithms are needed to perform these cell type matching tasks that can compare datasets from different experiment platforms and sample types. Here, we present significant enhancements to FR-Match (v2.0)-a multivariate nonparametric statistical testing approach for matching cell types in query datasets to reference atlases. FR-Match v2.0 includes a normalization procedure to facilitate cross-platform cluster-level comparisons (e.g., plate-based SMART-seq and droplet-based 10X Chromium single cell and single nucleus RNA-seq and spatial transcriptomics) and extends the pipeline to also allow cell-level matching. In the use cases evaluated, FR-Match showed robust and accurate performance for identifying common and novel cell types across tissue regions, for discovering sub-optimally clustered cell types, and for cross-platform and cross-sample cell type matching.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , ARN , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
10.
Plant Physiol ; 188(2): 879-897, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893913

RESUMEN

The ability to trace every cell in some model organisms has led to the fundamental understanding of development and cellular function. However, in plants the complexity of cell number, organ size, and developmental time makes this a challenge even in the diminutive model plant Arabidopsis (Arabidopsis thaliana). Duckweed, basal nongrass aquatic monocots, provide an opportunity to follow every cell of an entire plant due to their small size, reduced body plan, and fast clonal growth habit. Here we present a chromosome-resolved genome for the highly invasive Lesser Duckweed (Lemna minuta) and generate a preliminary cell atlas leveraging low cell coverage single-nuclei sequencing. We resolved the 360 megabase genome into 21 chromosomes, revealing a core nonredundant gene set with only the ancient tau whole-genome duplication shared with all monocots, and paralog expansion as a result of tandem duplications related to phytoremediation. Leveraging SMARTseq2 single-nuclei sequencing, which provided higher gene coverage yet lower cell count, we profiled 269 nuclei covering 36.9% (8,457) of the L. minuta transcriptome. Since molecular validation was not possible in this nonmodel plant, we leveraged gene orthology with model organism single-cell expression datasets, gene ontology, and cell trajectory analysis to define putative cell types. We found that the tissue that we computationally defined as mesophyll expressed high levels of elemental transport genes consistent with this tissue playing a role in L. minuta wastewater detoxification. The L. minuta genome and preliminary cell map provide a paradigm to decipher developmental genes and pathways for an entire plant.


Asunto(s)
Araceae/genética , Especies Introducidas , Dispersión de las Plantas/genética , Transcriptoma , Genoma de Planta
11.
Front Immunol ; 12: 690470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777332

RESUMEN

Vaccination to prevent infectious disease is one of the most successful public health interventions ever developed. And yet, variability in individual vaccine effectiveness suggests that a better mechanistic understanding of vaccine-induced immune responses could improve vaccine design and efficacy. We have previously shown that protective antibody levels could be elicited in a subset of recipients with only a single dose of the hepatitis B virus (HBV) vaccine and that a wide range of antibody levels were elicited after three doses. The immune mechanisms responsible for this vaccine response variability is unclear. Using single cell RNA sequencing of sorted innate immune cell subsets, we identified two distinct myeloid dendritic cell subsets (NDRG1-expressing mDC2 and CDKN1C-expressing mDC4), the ratio of which at baseline (pre-vaccination) correlated with the immune response to a single dose of HBV vaccine. Our results suggest that the participants in our vaccine study were in one of two different dendritic cell dispositional states at baseline - an NDRG2-mDC2 state in which the vaccine elicited an antibody response after a single immunization or a CDKN1C-mDC4 state in which the vaccine required two or three doses for induction of antibody responses. To explore this correlation further, genes expressed in these mDC subsets were used for feature selection prior to the construction of predictive models using supervised canonical correlation machine learning. The resulting models showed an improved correlation with serum antibody titers in response to full vaccination. Taken together, these results suggest that the propensity of circulating dendritic cells toward either activation or suppression, their "dispositional endotype" at pre-vaccination baseline, could dictate response to vaccination.


Asunto(s)
Células Dendríticas/inmunología , Anticuerpos contra la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Hepatitis B/prevención & control , Aprendizaje Automático , Análisis de la Célula Individual , Adulto , Anciano , Análisis de Correlación Canónica , Células Dendríticas/metabolismo , Femenino , Perfilación de la Expresión Génica , Hepatitis B/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Masculino , Persona de Mediana Edad , Análisis de la Célula Individual/métodos , Vacunación , Eficacia de las Vacunas
12.
Nature ; 598(7879): 111-119, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616062

RESUMEN

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Asunto(s)
Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Animales , Atlas como Asunto , Callithrix/genética , Epigénesis Genética , Epigenómica , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Glutamatos/metabolismo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Persona de Mediana Edad , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Filogenia , Especificidad de la Especie , Transcriptoma
13.
Genome Res ; 31(10): 1767-1780, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34088715

RESUMEN

Single-cell genomics is rapidly advancing our knowledge of the diversity of cell phenotypes, including both cell types and cell states. Driven by single-cell/-nucleus RNA sequencing (scRNA-seq), comprehensive cell atlas projects characterizing a wide range of organisms and tissues are currently underway. As a result, it is critical that the transcriptional phenotypes discovered are defined and disseminated in a consistent and concise manner. Molecular biomarkers have historically played an important role in biological research, from defining immune cell types by surface protein expression to defining diseases by their molecular drivers. Here, we describe a machine learning-based marker gene selection algorithm, NS-Forest version 2.0, which leverages the nonlinear attributes of random forest feature selection and a binary expression scoring approach to discover the minimal marker gene expression combinations that optimally capture the cell type identity represented in complete scRNA-seq transcriptional profiles. The marker genes selected provide an expression barcode that serves as both a useful tool for downstream biological investigation and the necessary and sufficient characteristics for semantic cell type definition. The use of NS-Forest to identify marker genes for human brain middle temporal gyrus cell types reveals the importance of cell signaling and noncoding RNAs in neuronal cell type identity.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Biomarcadores , Perfilación de la Expresión Génica/métodos , Aprendizaje Automático , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
14.
Nat Med ; 27(5): 892-903, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33767405

RESUMEN

Despite signs of infection-including taste loss, dry mouth and mucosal lesions such as ulcerations, enanthema and macules-the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly understood. To address this, we generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters. Using integrated cell normalization and annotation, we classified 34 unique cell subpopulations between glands and gingiva. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry factors such as ACE2 and TMPRSS members were broadly enriched in epithelial cells of the glands and oral mucosae. Using orthogonal RNA and protein expression assessments, we confirmed SARS-CoV-2 infection in the glands and mucosae. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 and TMPRSS expression and sustained SARS-CoV-2 infection. Acellular and cellular salivary fractions from asymptomatic individuals were found to transmit SARS-CoV-2 ex vivo. Matched nasopharyngeal and saliva samples displayed distinct viral shedding dynamics, and salivary viral burden correlated with COVID-19 symptoms, including taste loss. Upon recovery, this asymptomatic cohort exhibited sustained salivary IgG antibodies against SARS-CoV-2. Collectively, these data show that the oral cavity is an important site for SARS-CoV-2 infection and implicate saliva as a potential route of SARS-CoV-2 transmission.


Asunto(s)
COVID-19/virología , Boca/virología , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Enzima Convertidora de Angiotensina 2/análisis , Infecciones Asintomáticas , COVID-19/etiología , Humanos , Serina Endopeptidasas/análisis , Trastornos del Gusto/etiología , Trastornos del Gusto/virología , Replicación Viral
15.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33249453

RESUMEN

Single cell/nucleus RNA sequencing (scRNAseq) is emerging as an essential tool to unravel the phenotypic heterogeneity of cells in complex biological systems. While computational methods for scRNAseq cell type clustering have advanced, the ability to integrate datasets to identify common and novel cell types across experiments remains a challenge. Here, we introduce a cluster-to-cluster cell type matching method-FR-Match-that utilizes supervised feature selection for dimensionality reduction and incorporates shared information among cells to determine whether two cell type clusters share the same underlying multivariate gene expression distribution. FR-Match is benchmarked with existing cell-to-cell and cell-to-cluster cell type matching methods using both simulated and real scRNAseq data. FR-Match proved to be a stringent method that produced fewer erroneous matches of distinct cell subtypes and had the unique ability to identify novel cell phenotypes in new datasets. In silico validation demonstrated that the proposed workflow is the only self-contained algorithm that was robust to increasing numbers of true negatives (i.e. non-represented cell types). FR-Match was applied to two human brain scRNAseq datasets sampled from cortical layer 1 and full thickness middle temporal gyrus. When mapping cell types identified in specimens isolated from these overlapping human brain regions, FR-Match precisely recapitulated the laminar characteristics of matched cell type clusters, reflecting their distinct neuroanatomical distributions. An R package and Shiny application are provided at https://github.com/JCVenterInstitute/FRmatch for users to interactively explore and match scRNAseq cell type clusters with complementary visualization tools.


Asunto(s)
Algoritmos , Corteza Cerebral/metabolismo , Bases de Datos de Ácidos Nucleicos , RNA-Seq , ARN , Humanos , ARN/biosíntesis , ARN/genética , Análisis de la Célula Individual
16.
Front Immunol ; 11: 580373, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250895

RESUMEN

Conventional vaccine design has been based on trial-and-error approaches, which have been generally successful. However, there have been some major failures in vaccine development and we still do not have highly effective licensed vaccines for tuberculosis, HIV, respiratory syncytial virus, and other major infections of global significance. Approaches at rational vaccine design have been limited by our understanding of the immune response to vaccination at the molecular level. Tools now exist to undertake in-depth analysis using systems biology approaches, but to be fully realized, studies are required in humans with intensive blood and tissue sampling. Methods that support this intensive sampling need to be developed and validated as feasible. To this end, we describe here a detailed approach that was applied in a study of 15 healthy adults, who were immunized with hepatitis B vaccine. Sampling included ~350 mL of blood, 12 microbiome samples, and lymph node fine needle aspirates obtained over a ~7-month period, enabling comprehensive analysis of the immune response at the molecular level, including single cell and tissue sample analysis. Samples were collected for analysis of immune phenotyping, whole blood and single cell gene expression, proteomics, lipidomics, epigenetics, whole blood response to key immune stimuli, cytokine responses, in vitro T cell responses, antibody repertoire analysis and the microbiome. Data integration was undertaken using different approaches-NetworkAnalyst and DIABLO. Our results demonstrate that such intensive sampling studies are feasible in healthy adults, and data integration tools exist to analyze the vast amount of data generated from a multi-omics systems biology approach. This will provide the basis for a better understanding of vaccine-induced immunity and accelerate future rational vaccine design.


Asunto(s)
Vacunas contra Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Hepatitis B/diagnóstico , Monitorización Inmunológica/métodos , Vacunación/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Hepatitis B/inmunología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Biología de Sistemas , Resultado del Tratamiento
17.
medRxiv ; 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33140061

RESUMEN

Despite signs of infection, the involvement of the oral cavity in COVID-19 is poorly understood. To address this, single-cell RNA sequencing data-sets were integrated from human minor salivary glands and gingiva to identify 11 epithelial, 7 mesenchymal, and 15 immune cell clusters. Analysis of SARS-CoV-2 viral entry factor expression showed enrichment in epithelia including the ducts and acini of the salivary glands and the suprabasal cells of the mucosae. COVID-19 autopsy tissues confirmed in vivo SARS-CoV-2 infection in the salivary glands and mucosa. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 expression and SARS-CoV-2 RNA. Matched nasopharyngeal and saliva samples found distinct viral shedding dynamics and viral burden in saliva correlated with COVID-19 symptoms including taste loss. Upon recovery, this cohort exhibited salivary antibodies against SARS-CoV-2 proteins. Collectively, the oral cavity represents a robust site for COVID-19 infection and implicates saliva in viral transmission.

18.
Nat Commun ; 11(1): 1172, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127543

RESUMEN

von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identifies a transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse classification shows strong homology to extratelencephalic (ET) excitatory neurons that project to subcerebral targets. This cluster also shows strong homology to a putative ET cluster in human temporal cortex, but with a strikingly specific regional signature. Together these results suggest that VENs are a regionally distinctive type of ET neuron. Additionally, we describe the first patch clamp recordings of VENs from neurosurgically-resected tissue that show distinctive intrinsic membrane properties relative to neighboring pyramidal neurons.


Asunto(s)
Neuronas/fisiología , Lóbulo Temporal/citología , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/fisiología , Electrofisiología/métodos , Perfilación de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Ratones , Neuronas/citología , Células Piramidales/fisiología , Telencéfalo/citología , Lóbulo Temporal/fisiología
19.
Nature ; 573(7772): 61-68, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31435019

RESUMEN

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Asunto(s)
Astrocitos/clasificación , Evolución Biológica , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Neuronas/clasificación , Adolescente , Adulto , Anciano , Animales , Astrocitos/citología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Inhibición Neural , Neuronas/citología , Análisis de Componente Principal , RNA-Seq , Análisis de la Célula Individual , Especificidad de la Especie , Transcriptoma/genética , Adulto Joven
20.
PLoS One ; 13(12): e0209648, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30586455

RESUMEN

Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection. Although more transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues.


Asunto(s)
Núcleo Celular/genética , Análisis de la Célula Individual , Transcriptoma/genética , Corteza Visual/metabolismo , Animales , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Perfilación de la Expresión Génica/métodos , Ratones , Neuronas/metabolismo , Análisis de Secuencia de ARN/métodos , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA