Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 256(3): 227-40, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21856324

RESUMEN

The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (~25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 µg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Compuestos de Manganeso/farmacología , Nanopartículas del Metal , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/fisiología , Autofagia/fisiología , Western Blotting , Línea Celular , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/ultraestructura , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/metabolismo , Nanopartículas del Metal/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Microscopía de Interferencia , Mitocondrias/fisiología , Ratas , Transducción de Señal/fisiología , Superóxidos/metabolismo
2.
Toxicol Appl Pharmacol ; 240(2): 273-85, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19646462

RESUMEN

Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 microM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCdelta, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCdelta kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKCdelta proteolytic activation, indicating that caspases mediate PKCdelta cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCdelta knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCdelta cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.


Asunto(s)
Dopamina/metabolismo , Contaminantes Ambientales/toxicidad , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Estrés Oxidativo , Enfermedad de Parkinson/etiología , Proteína Quinasa C-delta/metabolismo , Compuestos de Vanadio/toxicidad , Clorometilcetonas de Aminoácidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Citocromos c/metabolismo , Fragmentación del ADN , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/metabolismo , Concentración 50 Inhibidora , Mesencéfalo/efectos de los fármacos , Mesencéfalo/enzimología , Mesencéfalo/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/enzimología , Neuronas/patología , Síndromes de Neurotoxicidad/enzimología , Síndromes de Neurotoxicidad/patología , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología , Proteína Quinasa C-delta/genética , Interferencia de ARN , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transferrina/metabolismo , Compuestos de Vanadio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA