Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
BMC Med Inform Decis Mak ; 24(1): 38, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38321428

BACKGROUND: Hemodialysis is a life-saving treatment used to eliminate toxins and metabolites from the body during poisoning. Despite its effectiveness, there needs to be more research on this method precisely, with most studies focusing on specific poisoning. This study aims to bridge the existing knowledge gap by developing a machine-learning prediction model for forecasting the prognosis of the poisoned patient undergoing hemodialysis. METHODS: Using a registry database from 2016 to 2022, this study conducted a retrospective cohort study at Loghman Hakim Hospital. First, the relief feature selection algorithm was used to identify the most important variables influencing the prognosis of poisoned patients undergoing hemodialysis. Second, four machine learning algorithms, including extreme gradient boosting (XGBoost), histgradient boosting (HGB), k-nearest neighbors (KNN), and adaptive boosting (AdaBoost), were trained to construct predictive models for predicting the prognosis of poisoned patients undergoing hemodialysis. Finally, the performance of paired feature selection and machine learning (ML) algorithm were evaluated to select the best models using five evaluation metrics including accuracy, sensitivity, specificity the area under the curve (AUC), and f1-score. RESULT: The study comprised 980 patients in total. The experimental results showed that ten variables had a significant influence on prognosis outcomes including age, intubation, acidity (PH), previous medical history, bicarbonate (HCO3), Glasgow coma scale (GCS), intensive care unit (ICU) admission, acute kidney injury, and potassium. Out of the four models evaluated, the HGB classifier stood out with superior results on the test dataset. It achieved an impressive mean classification accuracy of 94.8%, a mean specificity of 93.5 a mean sensitivity of 94%, a mean F-score of 89.2%, and a mean receiver operating characteristic (ROC) of 92%. CONCLUSION: ML-based predictive models can predict the prognosis of poisoned patients undergoing hemodialysis with high performance. The developed ML models demonstrate valuable potential for providing frontline clinicians with data-driven, evidence-based tools to guide time-sensitive prognosis evaluations and care decisions for poisoned patients in need of hemodialysis. Further large-scale multi-center studies are warranted to validate the efficacy of these models across diverse populations.


Poisons , Humans , Retrospective Studies , Prognosis , Renal Dialysis , Algorithms
2.
J Educ Health Promot ; 12: 58, 2023.
Article En | MEDLINE | ID: mdl-37113421

BACKGROUND: Chemotherapy is a complex, multi-disciplinary, and error-prone process. Information technology is being increasingly used in different health care settings with complex work procedures such as cancer care to enhance the quality and safety of care. In this study, we aimed to develop a computerized physician order entry (CPOE) for chemotherapy prescribing in patients with gastric cancer and to evaluate the impact of CPOE on medication errors and order problems. MATERIALS AND METHODS: A multi-disciplinary team consisting of a chemotherapy council group and system design and implementation team was formed for chemotherapy process evaluation, requirement analysis, developing computer-based protocols, and implementation of CPOE. A before and after study was conducted to evaluate the impact of CPOE on the chemotherapy process and medication errors and problem orders. To evaluate the level of end-user satisfaction, an ISO Norm 9241/110 usability questionnaire was chosen for the evaluation. RESULTS: Before the implementation of the CPOE system, 37 medication errors (46.25%) and 53 problem orders (66.25%) were recorded for 80 paper-based chemotherapy prescriptions. After implementation of the CPOE system, 7 (8.7%) medication errors and 6 (7.5%) problem orders were recorded for 80 CPOE prescriptions. The implementation of CPOE reduced the medication error by 37.55% and the problematic order by 58.75%. The results for usability evaluation indicate that the CPOE was within the first class of the ISONORM level rating; this shows that a CPOE is with very high satisfaction and a very high functionality rate. CONCLUSION: Developing a CPOE system significantly improved safety and quality of the chemotherapy process in cancer care settings by reducing the medication error, deleting unnecessary steps, improving communication and coordination between providers, and use of updated evidence-based medicine in direct chemotherapy orders. However, the CPOE system does not prevent all medication errors and may cause new errors. These errors can be human-related factors or associated with the design and implementation of the systems.

3.
BMC Med Inform Decis Mak ; 23(1): 54, 2023 04 06.
Article En | MEDLINE | ID: mdl-37024885

BACKGROUND: Gastric cancer is the most common malignant tumor worldwide and a leading cause of cancer deaths. This neoplasm has a poor prognosis and heterogeneous outcomes. Survivability prediction may help select the best treatment plan based on an individual's prognosis. Numerous clinical and pathological features are generally used in predicting gastric cancer survival, and their influence on the survival of this cancer has not been fully elucidated. Moreover, the five-year survivability prognosis performances of feature selection methods with machine learning (ML) classifiers for gastric cancer have not been fully benchmarked. Therefore, we adopted several well-known feature selection methods and ML classifiers together to determine the best-paired feature selection-classifier for this purpose. METHODS: This was a retrospective study on a dataset of 974 patients diagnosed with gastric cancer in the Ayatollah Talleghani Hospital, Abadan, Iran. First, four feature selection algorithms, including Relief, Boruta, least absolute shrinkage and selection operator (LASSO), and minimum redundancy maximum relevance (mRMR) were used to select a set of relevant features that are very informative for five-year survival prediction in gastric cancer patients. Then, each feature set was fed to three classifiers: XG Boost (XGB), hist gradient boosting (HGB), and support vector machine (SVM) to develop predictive models. Finally, paired feature selection-classifier methods were evaluated to select the best-paired method using the area under the curve (AUC), accuracy, sensitivity, specificity, and f1-score metrics. RESULTS: The LASSO feature selection algorithm combined with the XG Boost classifier achieved an accuracy of 89.10%, a specificity of 87.15%, a sensitivity of 89.42%, an AUC of 89.37%, and an f1-score of 90.8%. Tumor stage, history of other cancers, lymphatic invasion, tumor site, type of treatment, body weight, histological type, and addiction were identified as the most significant factors affecting gastric cancer survival. CONCLUSIONS: This study proved the worth of the paired feature selection-classifier to identify the best path that could augment the five-year survival prediction in gastric cancer patients. Our results were better than those of previous studies, both in terms of the time required to form the models and the performance measurement criteria of the algorithms. These findings may be very promising and can, therefore, inform clinical decision-making and shed light on future studies.


Stomach Neoplasms , Humans , Prognosis , Retrospective Studies , Algorithms , Machine Learning
4.
BMC Gastroenterol ; 23(1): 6, 2023 Jan 10.
Article En | MEDLINE | ID: mdl-36627564

BACKGROUND: Gastric cancer is one of the leading causes of death worldwide. Screening for gastric cancer greatly relies on endoscopy and pathology biopsy, which are invasive and pose financial burdens. Thus, the prevention of the disease by modifying lifestyle-related behaviors and dietary habits or even the prevention of risk factor formation is of great importance. This study aimed to construct an inexpensive, non-invasive, fast, and high-precision diagnostic model using six machine learning (ML) algorithms to classify patients at high or low risk of developing gastric cancer by analyzing individual lifestyle factors. METHODS: This retrospective study used the data of 2029 individuals from the gastric cancer database of Ayatollah Taleghani Hospital in Abadan City, Iran. The data were randomly separated into training and test sets (ratio 0.7:0.3). Six  ML methods, including multilayer perceptron (MLP), support vector machine (SVM) (linear kernel), SVM (RBF kernel), k-nearest neighbors (KNN) (K = 1, 3, 7, 9), random forest (RF), and eXtreme Gradient Boosting (XGBoost), were trained to construct prognostic models before and after performing the relief feature selection method. Finally, to evaluate the models' performance, the metrics derived from the confusion matrix were calculated via a test split and cross-validation. RESULTS: This study found 11 important influence factors for the risk of gastric cancer, such as Helicobacter pylori infection, high salt intake, and chronic atrophic gastritis, among other factors. Comparisons indicated that the XGBoost had the best performance for the risk prediction of gastric cancer. CONCLUSIONS: The results suggest that based on simple baseline patient data, the ML techniques have the potential to start the prescreening of gastric cancer and identify high-risk individuals who should proceed with invasive examinations. Our model could also considerably lessen the number of cases that need endoscopic surveillance. Future studies are required to validate the efficacy of the models in a larger and multicenter population.


Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/etiology , Retrospective Studies , Helicobacter Infections/complications , Machine Learning , Life Style
5.
Toxicology ; 486: 153431, 2023 03 01.
Article En | MEDLINE | ID: mdl-36682461

Poisoning with organophosphate compounds is a significant public health risk, especially in developing countries. Considering the importance of early and accurate prediction of organophosphate poisoning prognosis, the aim of this study was to develop a machine learning-based prediction model to predict the severity of organophosphate poisoning. The data of patients with organophosphate poisoning were retrospectively extracted and split into training and test sets in a ratio of 70:30. The feature selection was done by least absolute shrinkage and selection operator method. Selected features were fed into five machine learning techniques, including Histogram Boosting Gradient, eXtreme Gradient Boosting, K-Nearest Neighborhood, Support Vector Machine (SVM) (kernel = linear), and Random Forest. The Scikit-learn library in Python programming language was used to implement the models. Finally, the performance of developed models was measured using ten-fold cross-validation methods and some evaluation criteria with 95 % confidence intervals. A total of 1237 patients were used to train and test the machine learning models. According to the criteria determining severe organophosphate poisoning, 732 patients were assigned to group 1 (patients with mild to moderate poisoning) and 505 patients were assigned to group 2 (patients with severe poisoning). With an AUC value of 0.907 (95 % CI 0.89-0.92), the model developed using XGBoost outperformed other models. Feature importance evaluation found that venous blood gas-pH, white blood cells, and plasma cholinesterase activity were the top three variables that contribute the most to the prediction performance of the prognosis in patients with organophosphate poisoning. XGBoost model yield an accuracy of 90.1 % (95 % CI 0.891-0.918), specificity of 91.4 % (95 % CI 0.90-0.92), a sensitivity of 89.5 % (95 % CI 0.87-0.91), F-measure of 91.2 % (95 % CI 0.90-0.921), and Kappa statistic of 91.2 % (95 % CI 0.90-0.92). The machine learning-based prediction models can accurately predict the severity of organophosphate poisoning. Based on feature selection techniques, the most important predictors of organophosphate poisoning were VBG-pH, white blood cell count, plasma cholinesterase activity, VBG-BE, and age. The best algorithm with the highest predictive performance was the XGBoost classifier.


Organophosphate Poisoning , Humans , Organophosphate Poisoning/diagnosis , Retrospective Studies , Algorithms , Machine Learning , Cholinesterases
6.
J Biomed Phys Eng ; 12(6): 611-626, 2022 Dec.
Article En | MEDLINE | ID: mdl-36569564

Background: Since hospitalized patients with COVID-19 are considered at high risk of death, the patients with the sever clinical condition should be identified. Despite the potential of machine learning (ML) techniques to predict the mortality of COVID-19 patients, high-dimensional data is considered a challenge, which can be addressed by metaheuristic and nature-inspired algorithms, such as genetic algorithm (GA). Objective: This paper aimed to compare the efficiency of the GA with several ML techniques to predict COVID-19 in-hospital mortality. Material and Methods: In this retrospective study, 1353 COVID-19 in-hospital patients were examined from February 9 to December 20, 2020. The GA technique was applied to select the important features, then using selected features several ML algorithms such as K-nearest-neighbor (K-NN), Decision Tree (DT), Support Vector Machines (SVM), and Artificial Neural Network (ANN) were trained to design predictive models. Finally, some evaluation metrics were used for the comparison of developed models. Results: A total of 10 features out of 56 were selected, including length of stay (LOS), age, cough, respiratory intubation, dyspnea, cardiovascular diseases, leukocytosis, blood urea nitrogen (BUN), C-reactive protein, and pleural effusion by 10-independent execution of GA. The GA-SVM had the best performance with the accuracy and specificity of 9.5147e+01 and 9.5112e+01, respectively. Conclusion: The hybrid ML models, especially the GA-SVM, can improve the treatment of COVID-19 patients, predict severe disease and mortality, and optimize the utilization of health resources based on the improvement of input features and the adaption of the structure of the models.

7.
BMC Med Inform Decis Mak ; 22(1): 236, 2022 09 06.
Article En | MEDLINE | ID: mdl-36068539

INTRODUCTION: Chronic myeloid leukemia (CML) is a myeloproliferative disorder resulting from the translocation of chromosomes 19 and 22. CML includes 15-20% of all cases of leukemia. Although bone marrow transplant and, more recently, tyrosine kinase inhibitors (TKIs) as a first-line treatment have significantly prolonged survival in CML patients, accurate prediction using available patient-level factors can be challenging. We intended to predict 5-year survival among CML patients via eight machine learning (ML) algorithms and compare their performance. METHODS: The data of 837 CML patients were retrospectively extracted and randomly split into training and test segments (70:30 ratio). The outcome variable was 5-year survival with potential values of alive or deceased. The dataset for the full features and important features selected by minimal redundancy maximal relevance (mRMR) feature selection were fed into eight ML techniques, including eXtreme gradient boosting (XGBoost), multilayer perceptron (MLP), pattern recognition network, k-nearest neighborhood (KNN), probabilistic neural network, support vector machine (SVM) (kernel = linear), SVM (kernel = RBF), and J-48. The scikit-learn library in Python was used to implement the models. Finally, the performance of the developed models was measured using some evaluation criteria with 95% confidence intervals (CI). RESULTS: Spleen palpable, age, and unexplained hemorrhage were identified as the top three effective features affecting CML 5-year survival. The performance of ML models using the selected-features was superior to that of the full-features dataset. Among the eight ML algorithms, SVM (kernel = RBF) had the best performance in tenfold cross-validation with an accuracy of 85.7%, specificity of 85%, sensitivity of 86%, F-measure of 87%, kappa statistic of 86.1%, and area under the curve (AUC) of 85% for the selected-features. Using the full-features dataset yielded an accuracy of 69.7%, specificity of 69.1%, sensitivity of 71.3%, F-measure of 72%, kappa statistic of 75.2%, and AUC of 70.1%. CONCLUSIONS: Accurate prediction of the survival likelihood of CML patients can inform caregivers to promote patient prognostication and choose the best possible treatment path. While external validation is required, our developed models will offer customized treatment and may guide the prescription of personalized medicine for CML patients.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Machine Learning , Algorithms , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Retrospective Studies , Support Vector Machine
8.
Clin Med Insights Oncol ; 16: 11795549221116833, 2022.
Article En | MEDLINE | ID: mdl-36035639

Background: Gastric cancer remains one of the leading causes of worldwide cancer-specific deaths. Accurately predicting the survival likelihood of gastric cancer patients can inform caregivers to boost patient prognostication and choose the best possible treatment path. This study intends to develop an intelligent system based on machine learning (ML) algorithms for predicting the 5-year survival status in gastric cancer patients. Methods: A data set that includes the records of 974 gastric cancer patients retrospectively was used. First, the most important predictors were recognized using the Boruta feature selection algorithm. Five classifiers, including J48 decision tree (DT), support vector machine (SVM) with radial basic function (RBF) kernel, bootstrap aggregating (Bagging), hist gradient boosting (HGB), and adaptive boosting (AdaBoost), were trained for predicting gastric cancer survival. The performance of the used techniques was evaluated with specificity, sensitivity, likelihood ratio, and total accuracy. Finally, the system was developed according to the best model. Results: The stage, position, and size of tumor were selected as the 3 top predictors for gastric cancer survival. Among the 6 selected ML algorithms, the HGB classifier with the mean accuracy, mean specificity, mean sensitivity, mean area under the curve, and mean F1-score of 88.37%, 86.24%, 89.72%, 88.11%, and 89.91%, respectively, gained the best performance. Conclusions: The ML models can accurately predict the 5-year survival and potentially act as a customized recommender for decision-making in gastric cancer patients. The developed system in our study can improve the quality of treatment, patient safety, and survival rates; it may guide prescribing more personalized medicine.

9.
Inform Med Unlocked ; 30: 100908, 2022.
Article En | MEDLINE | ID: mdl-35280933

Introduction: The Coronavirus 2019 (COVID-19) epidemic stunned the health systems with severe scarcities in hospital resources. In this critical situation, decreasing COVID-19 readmissions could potentially sustain hospital capacity. This study aimed to select the most affecting features of COVID-19 readmission and compare the capability of Machine Learning (ML) algorithms to predict COVID-19 readmission based on the selected features. Material and methods: The data of 5791 hospitalized patients with COVID-19 were retrospectively recruited from a hospital registry system. The LASSO feature selection algorithm was used to select the most important features related to COVID-19 readmission. HistGradientBoosting classifier (HGB), Bagging classifier, Multi-Layered Perceptron (MLP), Support Vector Machine ((SVM) kernel = linear), SVM (kernel = RBF), and Extreme Gradient Boosting (XGBoost) classifiers were used for prediction. We evaluated the performance of ML algorithms with a 10-fold cross-validation method using six performance evaluation metrics. Results: Out of the 42 features, 14 were identified as the most relevant predictors. The XGBoost classifier outperformed the other six ML models with an average accuracy of 91.7%, specificity of 91.3%, the sensitivity of 91.6%, F-measure of 91.8%, and AUC of 0.91%. Conclusion: The experimental results prove that ML models can satisfactorily predict COVID-19 readmission. Besides considering the risk factors prioritized in this work, categorizing cases with a high risk of reinfection can make the patient triaging procedure and hospital resource utilization more effective.

...