Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Anim Biotechnol ; 32(4): 401-412, 2021 Aug.
Article En | MEDLINE | ID: mdl-31900040

This study elucidated the molecular markers that decrease oocyte quality during in vitro culture, restricting optimal developmental potential. Here, we evaluated the transcriptomic differences between cysteamine-treated and non-treated bovine cumulus oocyte complexes (COCs) after 22 h of co-culture in the maturation media using RNA sequencing. In total, 39,014 transcripts were sequenced between cysteamine-treated and non-treated mature COCs. We evaluated the relative expression of 21,472 genes, with 59 genes showing differential expression between the two COC groups. The cysteamine-treated group had 36 up-regulated gene transcripts and 23 down-regulated gene transcripts. Moreover, gene ontology (GO) enrichment analysis revealed that multiple biological processes were significantly enriched after cysteamine supplementation. Differentially expressed genes appeared to maintain normal oocyte physiology, regulation of apoptosis, differentiation, ossification or bone formation, cardiac and muscle physiology, hormonal secretion, and membrane construction for further embryonic development. In conclusion, cysteamine affects the mRNA level of COCs during oocyte maturation by upregulating potential molecular markers and downregulating genes that affect further embryonic development.


Cattle , Cysteamine , Oocytes , Transcriptome , Animals , Cattle/genetics , Cysteamine/pharmacology , Dietary Supplements , Gene Expression Profiling , Republic of Korea
2.
Asian-Australas J Anim Sci ; 33(12): 1896-1904, 2020 Dec.
Article En | MEDLINE | ID: mdl-32299162

OBJECTIVE: Estimating the genetic diversity and structures, both within and among chicken breeds, is critical for the identification and conservation of valuable genetic resources. In chickens, microsatellite (MS) marker polymorphisms have previously been widely used to evaluate these distinctions. Our objective was to analyze the genetic diversity and relationships among 22 chicken breeds in Asia based on allelic frequencies. METHODS: We used 469 genomic DNA samples from 22 chicken breeds from eight Asian countries (South Korea, KNG, KNB, KNR, KNW, KNY, KNO; Laos, LYO, LCH, LBB, LOU; Indonesia, INK, INS, ING; Vietnam, VTN, VNH; Mongolia, MGN; Kyrgyzstan, KGPS; Nepal, NPS; Sri Lanka, SBC) and three imported breeds (RIR, Rhode Island Red; WLG, White Leghorn; CON, Cornish). Their genetic diversity and phylogenetic relationships were analyzed using 20 MS markers. RESULTS: In total, 193 alleles were observed across all 20 MS markers, and the number of alleles ranged from 3 (MCW0103) to 20 (LEI0192) with a mean of 9.7 overall. The NPS breed had the highest expected heterozygosity (Hexp, 0.718±0.027) and polymorphism information content (PIC, 0.663±0.030). Additionally, the observed heterozygosity (Hobs) was highest in LCH (0.690±0.039), whereas WLG showed the lowest Hexp (0.372±0.055), Hobs (0.384±0.019), and PIC (0.325±0.049). Nei's DA genetic distance was the closest between VTN and VNH (0.086), and farthest between KNG and MGN (0.503). Principal coordinate analysis showed similar results to the phylogenetic analysis, and three axes explained 56.2% of the variance (axis 1, 19.17%; 2, 18.92%; 3, 18.11%). STRUCTURE analysis revealed that the 22 chicken breeds should be divided into 20 clusters, based on the highest ΔK value (46.92). CONCLUSION: This study provides a basis for future genetic variation studies and the development of conservation strategies for 22 chicken breeds in Asia.

3.
Sci Rep ; 9(1): 13269, 2019 09 13.
Article En | MEDLINE | ID: mdl-31519917

R. anatipestifer (RA) is one of the most harmful bacterial pathogens affecting the duck industry, and infection is associated with the production of proinflammatory cytokines, including IL-17A. Another proinflammatory cytokine, IL-23, is critical for the development of Th17 cells, which produce IL-17. However, IL-23 roles have not been studied in this infection. Here, we describe the identification and mRNA expression analysis of duck IL-23p19 (duIL-23p19) in splenic lymphocytes and macrophages stimulated with killed RA and in spleens of RA-infected ducks. Expression of duIL-23p19 transcript identified in this study was relatively high in livers of healthy ducks and was upregulated in mitogen-activated splenic lymphocytes as well as in splenic lymphocytes and macrophages stimulated with killed RA. In spleens of RA-infected ducks, expression levels of duIL-23p19 transcript were unchanged at all time points except on days 4 and 7 post-infection; however, duIL-17A and IL-17F expression levels were upregulated in both spleens of RA-infected ducks and splenic lymphocytes and macrophages stimulated with killed RA. In sera collected at 24 h after this infection, duIL-23p19 expression levels were unchanged, whereas IL-17A significantly upregulated. These results suggest that IL-23p19 does not play a critical role in the IL-17A response in early stages of RA-infected ducks.


Avian Proteins/metabolism , Flavobacteriaceae Infections/veterinary , Interleukin-17/metabolism , Interleukin-23 Subunit p19/metabolism , Poultry Diseases/immunology , Riemerella/immunology , Spleen/immunology , Amino Acid Sequence , Animals , Avian Proteins/genetics , Base Sequence , Ducks , Flavobacteriaceae Infections/immunology , Flavobacteriaceae Infections/microbiology , Interleukin-17/genetics , Interleukin-23 Subunit p19/genetics , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/microbiology , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Sequence Homology , Spleen/metabolism , Spleen/microbiology
4.
Anim Reprod Sci ; 205: 156-164, 2019 Jun.
Article En | MEDLINE | ID: mdl-30472064

Sex preselection has always generated great interest among livestock producers. Among the prevalent sperm sorting methods, there is much evidence that sex sorting has a negative effect on sperm quality with an altered pattern of sperm motility, ultimately reducing the period of cell viability. In this study, we have established a new approach for the preselected embryo production by using WholeMom®; a monoclonal antibody developed against bull sperm epitopes for simple and easy separation of X- and Y-sperm. There were no significant differences (P > 0.05) in the percentage of presumptive zygotes between the control and the X-sperm sorted group, but there was a difference in early cleaving embryos with there being 81.2 ± 1.4%, 78.3 ± 1.0%, and 66.7 ± 1.1% for the control, X-sperm sorted, and Y-sperm sorted groups, respectively. Similarly, the percentage of embryos that developed to the blastocyst stage (Day 7) were also greater (P < 0.05) in the control and X-sperm sorted group compared with the Y-sperm sorted group being 34.8 ± 1.0%, 32.1 ± 0.8%, and 23.7 ± 1.0% in the control, X-sperm sorted, and Y-sperm sorted groups, respectively. Furthermore, B-SRY F2 and B-SRY R2 gene expression data indicated there was a detection accuracy of 81.0% for the female embryos and 72.5% for the male embryos produced in vitro. In conclusion, in cattle in vitro derived embryo production using pre-selected sexed semen and subsequent embryo transfer can facilitate the mass production of individuals that are genetically superior.


Antibodies, Monoclonal/immunology , Cattle/physiology , Epitopes , Sex Preselection/veterinary , Spermatozoa/immunology , Animals , Cell Separation/methods , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary , Embryo, Mammalian , Embryonic Development/physiology , Female , Fertilization in Vitro/veterinary , Male , Oocytes/physiology , Sex Preselection/methods , X Chromosome , Y Chromosome
5.
Mol Immunol ; 95: 20-29, 2018 03.
Article En | MEDLINE | ID: mdl-29407573

As the dysregulation of IL-17 is implicated in the pathogenesis of various autoimmune and inflammatory diseases, the suppression of IL-17 production by Th2 cytokines could alleviate the development of these diseases. Previously, we confirmed that inflammatory cytokines including IL-17A are strongly associated with R. anatipestifer infection, which is one of the most important bacterial pathogens in the duck industry. Here, we found that IL-4 treatment downregulated the expression of IL-17A and IL-17F transcripts in splenic lymphocytes stimulated with R. anatipestifer. Moreover, duck IL-4 (duIL-4) treatment in R. anatipestifer-stimulated lymphocytes suppressed the expression of IL-23p19 and IL-12p40 transcripts compared to untreated and stimulated lymphocytes. Conversely, duIL-4 increased levels of IFN-γ and IL-10. We identified a full-length duIL-4 cDNA encoding 136 amino acids from ConA-activated splenic lymphocytes that shares 49.3-50% amino acid sequence identity with chicken and quail IL-4 and 21-29.7% with mammalian and piscine homologues. Low or moderate levels of duIL-4 transcript were observed in healthy tissues, including the spleen, bursa, and thymus, whereas duIL-4 expression was higher in the kidney and lung. Levels of duIL-4 were generally upregulated in mitogen-activated splenic lymphocytes but lower in the liver and spleen of R. anatipestifer-infected ducks compared to those of infected chickens. Recombinant duIL-4 promoted nitric oxide synthesis in duck macrophages stimulated by R. anatipestifer compared to untreated and stimulated control macrophages. These results demonstrate that IL-4 is an important Th2 cytokine that inhibits inflammatory responses in splenic lymphocytes stimulated with R. anatipestifer.


Ducks , Flavobacteriaceae Infections/immunology , Interleukin-17/genetics , Interleukin-4/genetics , Interleukin-4/pharmacology , Lymphocytes/drug effects , Riemerella/immunology , Spleen/drug effects , Animals , Cells, Cultured , Chickens , Cloning, Molecular , Ducks/genetics , Ducks/immunology , Ducks/microbiology , Flavobacteriaceae Infections/veterinary , Gene Expression Regulation/drug effects , Interleukin-17/metabolism , Interleukin-4/isolation & purification , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Lymphocytes/metabolism , Poultry Diseases/immunology , Poultry Diseases/microbiology , Quail , Spleen/cytology , Spleen/metabolism
6.
Mol Reprod Dev ; 85(1): 46-61, 2018 01.
Article En | MEDLINE | ID: mdl-29219221

In vitro embryo development remains suboptimal compared to in vivo development due to the challenge from various stressors associated with in vitro culturing of oocytes. When 0.2 µM lycopene was added to oocyte in vitro maturation and embryo culture media, to assess its antioxidant effects on embryo development, we observed a significant (p < 0.05) increase in cleavage and blastocyst development rates compared to the corresponding controls (84.3 ± 0.6% vs. 73.1 ± 1.9% and 41.0 ± 1.4% vs. 33.4 ± 0.7%, respectively). Lycopene also significantly reduced (p < 0.05) intracellular reactive oxygen species concentrations in oocytes and blastocysts, whereas lipid peroxidation and mitochondrial activity increased compared to control conditions. The number of apoptotic nuclei was significantly reduced in the lycopene-treated compared to the control group (1.7 ± 0.1 vs. 4.7 ± 0.3), and the quantity of cells in the trophectoderm (207.1 ± 1.6 vs. 171.3 ± 1.0, respectively) and inner cell mass (41.9 ± 0.4 vs. 36.7 ± 0.4, respectively) was higher following treatment-although the inner cell mass-to-trophectoderm ratio was unchanged (1:3.3 vs. 1:3.4 for lycopene vs. control, respectively). Lycopene supplementation also significantly (p < 0.05) attenuated expression of IKBKB (Inhibitor of nuclear factor kappa B kinase, subunit beta) and reduced Caspase 9 and Caspase 3 protein abundance, while up-regulating GDF9 (Growth and differentiation factor 9), BMP15 (Bone morphogenetic protein 15), SOD2 (Superoxide dismutase 2), NDUFA2 (NADH dehydrogenase), ACADL (Acyl-CoA dehydrogenase, long chain), and ACSL3 (Acyl-CoA synthetase 3, long-chain membrane 3) transcription compared to control. Therefore, co-culturing with lycopene during oocyte maturation improved bovine embryo developmental potential during in vitro culture by improving embryonic resilience to stress.


Antioxidants/pharmacology , Embryo Culture Techniques , Embryonic Development/drug effects , Lycopene/pharmacology , Oocytes/growth & development , Acyl-CoA Dehydrogenase, Long-Chain/biosynthesis , Animals , Blastocyst/cytology , Bone Morphogenetic Protein 15/biosynthesis , Caspase 3/analysis , Caspase 9/analysis , Cattle , Coenzyme A Ligases/biosynthesis , Growth Differentiation Factor 9/biosynthesis , I-kappa B Kinase/biosynthesis , NADH Dehydrogenase/biosynthesis , Superoxide Dismutase/biosynthesis
7.
Dev Comp Immunol ; 81: 225-234, 2018 04.
Article En | MEDLINE | ID: mdl-29241952

Th17-cell-mediated inflammation is affected by the soluble form of common cytokine receptor γ chain (γc). We previously suggested that inflammatory cytokines including interleukin (IL)-17A are associated with Riemerella anatipestifer infection, which a harmful bacterial pathogen in ducks. Here, the expression profiles of membrane-associated γc (duγc-a) and soluble γc (duγc-b) in R. anatipestifer-stimulated splenic lymphocytes and macrophages, and in the spleens and livers of R. anatipestifer-infected ducks, were investigated. In vitro and in vivo results indicated that the expression levels of both forms of γc were increased, showing that marked increases were detected in the expression of the duγc-b form rather than the duγc-a form. Treatment with γc-specific siRNA downregulated mRNA expression of Th17-related cytokines, including IL-17A and IL-17F, in duck splenic macrophages stimulated with R. anatipestifer, whereas the expressions of interferon (IFN)-γ and IL-2 were enhanced. The results showed that the upregulation of γc, especially the duγc-b form, was associated with expression of Th17-related cytokines during R. anatipestifer infection.


Avian Proteins/metabolism , Ducks/immunology , Flavobacteriaceae Infections/immunology , Interleukin Receptor Common gamma Subunit/metabolism , Interleukin-17/metabolism , Macrophages/immunology , Riemerella/immunology , Spleen/pathology , Th17 Cells/immunology , Animals , Cells, Cultured , Ducks/microbiology , Inflammation Mediators/metabolism , Interferon-gamma/metabolism , Interleukin-2/metabolism , RNA, Small Interfering/genetics
8.
Theriogenology ; 103: 173-184, 2017 Nov.
Article En | MEDLINE | ID: mdl-28800556

This study sought to modulate factors that reduce embryo quality in in vitro culture (IVC) systems. Over eight replicates, 3075 oocytes were cultured in in vitro maturation media containing various concentrations of lycopene, followed by in vitro fertilization and culture. The percentages of MII-stage oocytes, the presumptive zygotes that underwent cleavage and developed into blastocysts were significantly (P < 0.05) higher, the intracellular ROS concentrations reduced significantly (P < 0.05) in oocytes/blastocysts, TUNEL assay demonstrates reduced apoptosis and increased total cell number per blastocyst (P < 0.05), Immunocytochemistry confirmed that diminished protein expression of nuclear factor kappa B (NFκB), cyclooxygenase-2 (COX2), and 8-oxoguanine (indicated by ROS) and relative mRNA expression of the Caspase-3, NFκB, COX2, iNOS and BCL2-associated X (BAX) was significantly (P < 0.05) lower whereas the anti-apoptotic gene BCL2 was significantly (P < 0.05) higher in the 0.2 µM lycopene-supplemented group than the control. In conclusion, lycopene improves blastocyst quality by overcoming unfavorable conditions in in vitro culture systems.


Carotenoids/pharmacology , Cattle/embryology , Embryo Culture Techniques/veterinary , Embryonic Development/drug effects , Animals , Apoptosis/drug effects , Blastocyst/cytology , Blastocyst/physiology , Carotenoids/chemistry , Culture Media , Cumulus Cells , Fertilization in Vitro , In Vitro Oocyte Maturation Techniques , Lycopene , Molecular Structure , Oocytes/physiology , RNA, Messenger , Reactive Oxygen Species
9.
Dev Comp Immunol ; 77: 121-127, 2017 12.
Article En | MEDLINE | ID: mdl-28780326

Riemerella anatipestifer, an important infectious bacterium affecting the duck industry, has 5-75% mortality, depending on strain virulence. We previously demonstrated that proinflammatory cytokines are involved in inflammation during, and regulating susceptibility to, R. anatipestifer infection. We investigated the effects of the anti-inflammatory compound berberine in duck splenic lymphocytes stimulated with killed R. anatipestifer, and in R. anatipestifer-infected ducks. IL-17A, IL-17F, and IL-1ß transcripts were downregulated, and IFN-γ and IL-10 transcripts enhanced, in berberine-treated stimulated splenic lymphocytes, compared to stimulated untreated splenic lymphocytes. Similarly, IL-17A, IL-17F, IL-6, and IL-1ß expressions were significantly reduced, and IFN-γ and IL-10 expressions significantly upregulated, in spleens and livers of R. anatipestifer-infected berberine-treated ducks, compared to infected untreated birds. Moreover, infected and treated birds showed increased survival rates and significantly decreased bacterial burdens compared to infected untreated birds, confirming that inflammatory cytokines are strongly associated with R. anatipestifer infection in ducks.


Anti-Inflammatory Agents/therapeutic use , Berberine/therapeutic use , Ducks/immunology , Flavobacteriaceae Infections/drug therapy , Lymphocytes/immunology , Poultry Diseases/drug therapy , Riemerella/physiology , Animals , Bacterial Load , Cytokines/metabolism , Ducks/microbiology , Flavobacteriaceae Infections/immunology , Lymphocyte Activation , Lymphocytes/microbiology , Poultry Diseases/immunology , Spleen/pathology
10.
Dev Comp Immunol ; 63: 36-46, 2016 10.
Article En | MEDLINE | ID: mdl-27212414

Although IL-17 cytokines play critical roles in host defense immunity, dysregulated expression of these cytokines is associated with inflammation and autoimmune diseases. Riemerella anatipestifer is the most important infectious bacterium in the duck industry. Interestingly, not all avian species are equally susceptible to R. anatipestifer infection. This paper reports the first description of mortality rate, bacterial burden, and expression profiles of immune-related genes between ducks and chickens infected with R. anatipestifer. Ducks exhibited increased susceptibility to R. anatipestifer infection compared to chickens, as determined by mortality rate and bacterial burden. Comparative expression analyses of immune-related genes in R. anatipestifer-infected tissues obtained from both species revealed that TLR3, TLR7, IL-2, IL-4, and IFN-γ transcript levels were higher in chickens, whereas TLR4 and IL-17A transcript levels were higher in ducks. Marked increases in expression of IL-17A and IL-6, but not TGF-ß, were associated with Th17 cell differentiation in duck splenic lymphocytes, but not in chicken splenic lymphocytes, stimulated with R. anatipestifer. Moreover, upregulation of IL-1ß, IL-6, and IL-17A mRNA expressions, but not TGF-ß, was confirmed in the liver and spleen of ducks infected with R. anatipestifer, indicating that IL-17A is strongly associated with Riemerella infection in ducks.


Avian Proteins/metabolism , Bird Diseases/immunology , Ducks/immunology , Flavobacteriaceae Infections/immunology , Flavobacteriaceae/immunology , Interleukin-17/metabolism , Lymphocytes/immunology , Animals , Avian Proteins/genetics , Bacterial Load , Chickens/immunology , Disease Susceptibility , Interleukin-17/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Lymphocytes/microbiology , Spleen/pathology , Up-Regulation
11.
Dev Comp Immunol ; 61: 190-7, 2016 08.
Article En | MEDLINE | ID: mdl-27060655

Interleukin (IL)-17D is a proinflammatory cytokine with currently largely unknown biological functions. Here we provide the description of the sequence, bioactivity, and mRNA expression profile of duck IL-17D homologue. A full-length duck IL-17D (duIL-17D) cDNA with a 624-bp coding region was identified from the large intestine. duIL-17D shares approximately 94.7% identity with its chicken counterpart, which is also identified in this work. duIL-17D exhibits 62.6-68.4% and 52.1-53.1% identity with mammalian and piscine homologues. Recombinant duIL-17D promoted the expression of proinflammatory cytokines such as IL-6, IL-8, and IL-1ß in duck embryo fibroblast cells. Very low levels of duIL-17D transcript were observed in healthy lymphoid tissues, including bursa, thymus, and spleen, while duIL-17D expression was relatively high in the heart. The duIL-17D expression profiles were examined in mitogen-stimulated splenic lymphocytes, as well as tissues affected by Riemerella anatipestifer infection. The levels of duIL-17D were mostly upregulated in mitogen-activated splenic lymphocytes but downregulated in the liver and spleen of R. anatipestifer-infected ducks. These results provide new insights into the roles of IL-17D in host protective immune responses to Riemerella infection, which can therefore lead to further studies of its biological functions in different disease models of ducks and other avian species.


Avian Proteins/metabolism , Ducks/immunology , Flavobacteriaceae Infections/immunology , Interleukin-27/metabolism , Lymphocytes/physiology , Riemerella/immunology , Animals , Avian Proteins/genetics , Biological Evolution , Cloning, Molecular , Cytokines/metabolism , Gene Expression Profiling , Gene Expression Regulation , Immunity, Innate , Inflammation Mediators/metabolism , Interleukin-27/genetics , Lymphocytes/microbiology , Phylogeny , Spleen/pathology , Transgenes/genetics
...