Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
iScience ; 27(4): 109297, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38715943

RESUMEN

The One Health (OH) approach is used to control/prevent zoonotic events. However, there is a lack of tools for systematically assessing OH practices. Here, we applied the Global OH Index (GOHI) to evaluate the global OH performance for zoonoses (GOHI-Zoonoses). The fuzzy analytic hierarchy process algorithm and fuzzy comparison matrix were used to calculate the weights and scores of five key indicators, 16 subindicators, and 31 datasets for 160 countries and territories worldwide. The distribution of GOHI-Zoonoses scores varies significantly across countries and regions, reflecting the strengths and weaknesses in controlling or responding to zoonotic threats. Correlation analyses revealed that the GOHI-Zoonoses score was associated with economic, sociodemographic, environmental, climatic, and zoological factors. Additionally, the Human Development Index had a positive effect on the score. This study provides an evidence-based reference and guidance for global, regional, and country-level efforts to optimize the health of people, animals, and the environment.

2.
Infect Dis Poverty ; 12(1): 43, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095536

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) can involve persistence, sequelae, and other clinical complications that last weeks to months to evolve into long COVID-19. Exploratory studies have suggested that interleukin-6 (IL-6) is related to COVID-19; however, the correlation between IL-6 and long COVID-19 is unknown. We designed a systematic review and meta-analysis to assess the relationship between IL-6 levels and long COVID-19. METHODS: Databases were systematically searched for articles with data on long COVID-19 and IL-6 levels published before September 2022. A total of 22 published studies were eligible for inclusion following the PRISMA guidelines. Analysis of data was undertaken by using Cochran's Q test and the Higgins I-squared (I2) statistic for heterogeneity. Random-effect meta-analyses were conducted to pool the IL-6 levels of long COVID-19 patients and to compare the differences in IL-6 levels among the long COVID-19, healthy, non-postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (non-PASC), and acute COVID-19 populations. The funnel plot and Egger's test were used to assess potential publication bias. Sensitivity analysis was used to test the stability of the results. RESULTS: An increase in IL-6 levels was observed after SARS-CoV-2 infection. The pooled estimate of IL-6 revealed a mean value of 20.92 pg/ml (95% CI = 9.30-32.54 pg/ml, I2 = 100%, P < 0.01) for long COVID-19 patients. The forest plot showed high levels of IL-6 for long COVID-19 compared with healthy controls (mean difference = 9.75 pg/ml, 95% CI = 5.75-13.75 pg/ml, I2 = 100%, P < 0.00001) and PASC category (mean difference = 3.32 pg/ml, 95% CI = 0.22-6.42 pg/ml, I2 = 88%, P = 0.04). The symmetry of the funnel plots was not obvious, and Egger's test showed that there was no significant small study effect in all groups. CONCLUSIONS: This study showed that increased IL-6 correlates with long COVID-19. Such an informative revelation suggests IL-6 as a basic determinant to predict long COVID-19 or at least inform on the "early stage" of long COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Interleucina-6 , Síndrome Post Agudo de COVID-19
3.
Int J Med Sci ; 19(1): 47-64, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34975298

RESUMEN

Background: Clear cell renal cell carcinoma (ccRCC) is a cell metabolic disease with high metastasis rate and poor prognosis. Our previous studies demonstrate that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in ccRCC and predicts poor outcomes of ccRCC patients. The aims of this study were to confirm the oncogenic role of G6PD in ccRCC and unravels novel mechanisms involving Cyclin E1 and MMP9 in G6PD-mediated ccRCC progression. Methods: Real-time RT-PCR, Western blot and immunohistochemistry were used to determine the expression patterns of G6PD, Cyclin E1 and MMP9 in ccRCC. TCGA dataset mining was used to identify Cyclin E1 and MMP9 correlations with G6PD expression, relationships between clinicopathological characteristics of ccRCC and the genes of interest, as well as the prognosis of ccRCC patients. The role of G6PD in ccRCC progression and the regulatory effect of G6PD on Cyclin E1 and MMP9 expression were investigated by using a series of cytological function assays in vitro. To verify this mechanism in vivo, xenografted mice models were established. Results: G6PD, Cyclin E1 and MMP9 were overexpressed and positively correlated in ccRCC, and they were associated with poor prognosis of ccRCC patients. Moreover, G6PD changed cell cycle dynamics, facilitated cells proliferation, promoted migration in vitro, and enhanced ccRCC development in vivo, more likely through enhancing Cyclin E1 and MMP9 expression. Conclusion: These findings present G6PD, Cyclin E1 and MMP9, which contribute to ccRCC progression, as novel biomarkers and potential therapeutic targets for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales/genética , Ciclina E/genética , Regulación Neoplásica de la Expresión Génica , Glucosafosfato Deshidrogenasa/fisiología , Neoplasias Renales/genética , Metaloproteinasa 9 de la Matriz/genética , Proteínas Oncogénicas/genética , Regulación hacia Arriba , Animales , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Ciclina E/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Oncogénicas/metabolismo
4.
Cancer Sci ; 112(10): 4075-4086, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34310804

RESUMEN

The regulatory relationship between silent information regulator 2 (SIRT2) and glucose 6-phosphate dehydrogenase (G6PD) in clear cell renal cell carcinoma (ccRCC) is still unclear. The present study aimed to explore the function of SIRT2 and its regulatory effect on G6PD in ccRCC. The Cancer Genome Atlas data mining of SIRT2 was first analyzed. Quantitative real-time PCR and western blot analyses were used to assess the mRNA and protein expression levels, respectively. Cell viability, colony formation, cell cycle, cell apoptosis, and TUNEL assays and EdU staining were used to investigate the roles of SIRT2 in ccRCC proliferation and apoptosis. The coimmunoprecipitation (Co-IP) assay was used to analyze the association between SIRT2 and G6PD in ccRCC cells. Quantitative Co-IP assay was used to detect the levels of G6PD ubiquitination and small ubiquitin-related modifier 1 (SUMO1). An in vivo experiment was also carried out to confirm in vitro findings. The results indicated that SIRT2 promoted ccRCC proliferation and inhibited apoptosis by regulating cell cycle and apoptosis related proteins. Silent information regulator 2 interacted with G6PD, facilitated its activity through deacetylation, and increased its stability by reducing its ubiquitination and enhancing its SUMO1 modification. Silent information regulator 2 also promoted ccRCC tumor development in vivo. Taken together, the present study indicated that SIRT2 promoted ccRCC progression by increasing G6PD activity and stability, and it could be a potential new diagnostic and therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Cisteína Endopeptidasas/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Neoplasias Renales/metabolismo , Sirtuina 2/fisiología , Acetilación , Animales , Apoptosis , Western Blotting , Carcinoma de Células Renales/patología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular , Bases de Datos Genéticas , Progresión de la Enfermedad , Femenino , Humanos , Inmunoprecipitación , Neoplasias Renales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Modificación Traduccional de las Proteínas , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Tumorales Cultivadas , Ensayo de Tumor de Célula Madre , Ubiquitinación
5.
Cancer Cell Int ; 20(1): 565, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33292264

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

6.
Cancer Cell Int ; 20: 483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041664

RESUMEN

BACKGROUND: Glucose 6-phosphate dehydrogenase (G6PD) serves key roles in cancer cell metabolic reprogramming, and has been reported to be involved in certain carcinogenesis. Previous results from our laboratory demonstrated that overexpressed G6PD was a potential prognostic biomarker in clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer. G6PD could stimulate ccRCC growth and invasion through facilitating reactive oxygen species (ROS)-phosphorylated signal transducer and activator of transcription 3 (pSTAT3) activation and ROS-MAPK-MMP2 axis pathway, respectively. However, the reasons for ectopic G6PD overexpression and the proliferation repressive effect of G6PD inhibition in ccRCC are still unclear. METHODS: The impact of ROS accumulation on NF-κB signaling pathway and G6PD expression was determined by real-time RT-PCR and Western blot in ccRCC cells following treatment with ROS stimulator or scavenger. The regulatory function of NF-κB signaling pathway in G6PD transcription was analyzed by real-time RT-PCR, Western blot, luciferase and ChIP assay in ccRCC cells following treatment with NF-κB signaling activator/inhibitor or lentivirus infection. ChIP and Co-IP assay was performed to demonstrate protein-DNA and protein-protein interaction of NF-κB and pSTAT3, respectively. MTS assay, human tissue detection and xenograft model were conducted to characterize the association between NF-κB, pSTAT3, G6PD expression level and proliferation functions. RESULTS: ROS-stimulated NF-κB and pSTAT3 signaling over-activation could activate each other, and exhibit cross-talks in G6PD aberrant transcriptional regulation. The underlying mechanism was that NF-κB signaling pathway facilitated G6PD transcription via direct DNA-protein interaction with p65 instead of p50. p65 and pSTAT3 formed a p65/pSTAT3 complex, occupied the pSTAT3-binding site on G6PD promoter, and contributed to ccRCC proliferation following facilitated G6PD overexpression. G6PD, pSTAT3, and p65 were highly expressed and positively correlated with each other in ccRCC tissues, confirming that NF-κB and pSTAT3 synergistically promote G6PD overexpression. Moreover, G6PD inhibitor exhibited tumor-suppressor activities in ccRCC and attenuated the growth of ccRCC cells both in vitro and in vivo. CONCLUSION: ROS-stimulated aberrations of NF-κB and pSTAT3 signaling pathway synergistically drive G6PD transcription through forming a p65/pSTAT3 complex. Moreover, G6PD activity inhibition may be a promising therapeutic strategy for ccRCC treatment.

7.
BMC Cancer ; 20(1): 682, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698787

RESUMEN

BACKGROUND: Long intergenic non-coding RNA 00511 (LINC00511) is highly expressed in diverse cancers and has a correlation with poor clinical outcomes for cancer patients. In view of contradictory data among published data, we aim to evaluate the prognostic role of LINC00511 for cancer patients. METHODS: In the present study, a meta-analysis of related studies has been performed to investigate the prognostic significance of LINC00511 in cancer patients. Relevant studies published before December 22, 2019 were systematically searched online in PubMed, EMBASE, Web of Science, and the Cochrane Library databases. The relationship between LINC00511 expression and cancer patients' survival, including overall survival (OS), disease-free survival (DFS)/relapse-free survival (RFS) and progression-free survival (PFS), was evaluated using pooled hazard ratios (HRs) with their corresponding 95% confidence intervals (CIs). The association between LINC00511 expression and clinicopathological features was assessed using odd ratios (ORs) and their corresponding 95% CIs. RESULTS: A total of 14 eligible studies with 1883 patients were enrolled in the present meta-analysis. The results demonstrated that elevated expression of LINC00511 was significantly associated with poor OS (HR = 2.62; 95% CI: 2.00-3.45; p <  0.001), PFS (HR = 1.80; 95% CI: 1.29-2.51; p = 0.001) and DFS/RFS (HR = 2.90; 95% CI: 1.04-8.12; p = 0.04). Additionally, High LINC00511 expression was associated with large tumor size (OR = 3.10; 95% CI: 1.97-4.86; p <  0.00001), lymph node metastasis (OR = 3.11; 95% CI: 2.30-4.21; p <  0.00001), advanced clinical stage (OR = 3.95; 95% CI: 2.68-5.81; p <  0.00001), distant metastasis (OR = 2.39; 95% CI: 1.16-4.93; p = 0.02), and disease recurrence (OR = 4.62; 95% CI: 2.47-8.65; p <  0.00001). Meanwhile, no correlation was found between LINC00511 expression and age, gender, and histological grade. These findings were consolidated by the results of bioinformatics analysis. CONCLUSIONS: Based on our findings, LINC00511 may serve as a novel prognostic biomarker for cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/metabolismo , Neoplasias/mortalidad , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Humanos , Pronóstico , Sesgo de Publicación
8.
Int J Oncol ; 57(1): 197-212, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32319593

RESUMEN

Glucose­6­phosphate dehydrogenase (G6PD) is crucial rate­limiting enzyme of the pentose phosphate pathway (PPP). G6PD dysregulation has been reported in various types of human cancer, and the role of G6PD in cancer progression was demonstrated in numerous studies. A previous study from our laboratory described the prognostic significance of G6PD in clear cell renal cell carcinoma (ccRCC), and demonstrated its proliferative role through positive feedback regulation of the phosphorylated form of signal transducer and activator of transcription 3. However, the role of G6PD in ccRCC invasion remains unclear. In the present study, reverse transcription­quantitative (RT­q) PCR, western blotting, enzyme activity assay, transwell assay and immunohistochemistry analysis in cell model, xenograft mice model and human specimen studies were performed to evaluate the role of G6PD in ccRCC invasion. The results from the present study demonstrated that G6PD may promote ccRCC cell invasive ability by increasing matrix metalloproteinase 2 (MMP2) mRNA and protein expression both in vitro and in vivo. In addition, a positive correlation between G6PD and MMP2 expression was demonstrated by RT­qPCR and western blotting in twenty pairs of ccRCC tumor specimens and matched adjacent normal tissues. Furthermore, G6PD promoted reactive oxygen species (ROS) generation and activated the MAPK signaling pathway in ccRCC cells. In addition, ROS significantly promoted the MAPK signaling pathway activation, which in turn contributed to MMP2 overexpression in ccRCC cells. In conclusion, the present study demonstrated that G6PD may facilitate ccRCC cell invasive ability by enhancing MMP2 expression through ROS­MAPK axis pathway.


Asunto(s)
Carcinoma de Células Renales/patología , Glucosafosfato Deshidrogenasa/metabolismo , Neoplasias Renales/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosafosfato Deshidrogenasa/genética , Humanos , Riñón/patología , Sistema de Señalización de MAP Quinasas/genética , Invasividad Neoplásica/patología , Vía de Pentosa Fosfato/genética , Especies Reactivas de Oxígeno/metabolismo , Organismos Libres de Patógenos Específicos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nutr Res ; 73: 1-14, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31835095

RESUMEN

The purpose of this review is to discuss the molecular mechanisms underlying the anticancer properties of S-allylcysteine (SAC). Over the decades, evidence derived from in vitro and in vivo studies has shown that this predominant organosulfur component of aged garlic extract has multiple anticancer properties; hence, some potential mechanisms responsible for the anticarcinogenic action have been suggested. These mechanisms include induction of carcinogen detoxification, inhibition of cell proliferation and growth, mediation of cell cycle arrest, induction of cell death, inhibition of epithelial-mesenchymal transition and cell invasion, suppression of metastasis, and induction of immunomodulation in cancer cells. However, the actions and mechanisms are not comprehensive, and important aspects of the anticancer activities of SAC still need to be explored. In light of the current evidence, more specific studies, specifically clinical and epidemiological, are required to advance the promising use of SAC as a chemopreventive and therapeutic agent in cancer.


Asunto(s)
Antineoplásicos/farmacología , Cisteína/análogos & derivados , Ajo , Neoplasias/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisteína/farmacología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...