Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38980386

RESUMEN

In this paper, the work has been done to develop a cost-effective methodology, for the isolation of the potential producer of bacterial nanocellulose. No report is available in the literature, on the use of gram flour and table sugar for the screening of nanocellulose-producing isolates. Since commercially used, Hestrin-Schramm medium is expensive for the isolation of nanocellulose-producing micro-organisms, the possibility of using gram flour-table sugar medium was investigated in this work. Qualitative screening of micro-organisms was done using cost-effective medium, i.e., gram flour-table sugar medium. Qualitative analysis of various nanocellulose-producing bacteria depicted that cellulose layer production occurred on both HS medium and gram flour-table sugar medium. The yield of nanocellulose was also better on air-liquid surface in case of gram flour-table sugar medium as compared to HS medium. 16S rRNA was used for molecular characterization of bacterial strain and the best nanocellulose producer was identified as Novacetimonas hansenii BMK-3_NC240423 (isolated from rotten banana). FTIR and FE-SEM studies of nanocellulose pellicle produced on HS medium and gram flour-table sugar medium demonstrated equivalent structural, morphological, and chemical properties. The cost of newly designed medium (0.01967 $/L) is nearly 90 times lower than the Hestrin-Schramm medium (1.748 $/L), which makes the screening of nanocellulose producers very cost-effective. A strategy of using gram flour extract-table sugar medium for the screening of nanocellulose-producing micro-organisms is a novel approach, which will drastically reduce the screening associated cost of cellulose-producing micro-organisms and also motivate the researchers/industries for comprehensive screening programme for getting high cellulose-producing microbes.

2.
3 Biotech ; 13(12): 396, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37970449

RESUMEN

Parthenium hysterophorous, a widespread weed in India, contributes a substantial amount of lignocellulosic biomass. The key objective of this study is to evaluate the feasibility of producing xylanase enzyme from P. hysterophorus weed biomass using the fungus Aspergillus niger. The impact of various physiological factors was confirmed through a two-step approach: first, a one-factor-at-a-time (OFAT) investigation, and subsequently, employing the RSM-based CCD method in statistical design. This research revealed that the RSM-based model led to the optimization of enzyme activity, resulting in a value of 2098.08 IU/gds for xylanase. This was achieved with an incubation time of 4.5 days, a medium pH of 6, and a cultivation temperature of 32.5 °C. Additionally, a pretreatment involving 1% NaOH and a 30-min autoclave treatment was found to alter the chemical composition of lignocellulose substrates (cellulose 43.87% and xylan 28.7%), thereby enhancing the efficiency of enzymatic hydrolysis. Moreover, fermentable sugars were produced by autoclave-assisted alkali pretreatment (NaOH-1.0% w/v) at rates of 219.6 ± 2.05 mg/gds-1 by utilizing the crude xylanase from A. niger and 291.3 ± 1.2 mg/gds-1 from commercial xylanase enzyme. Our study revealed that P. hysterophorus served as a viable and affordable substrate for fermentable sugar liberation, and xylanase is a rate-limiting enzyme in enzymatic saccharification.

3.
Prep Biochem Biotechnol ; : 1-9, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937534

RESUMEN

The current study intended to analyze the impact of ethanol and lactic acid on the bacterial cellulose yield as well as physicochemical and mechanical properties, by using Gluconacetobacter kombuchae. The optimization of ethanol and lactic acid concentration has been done by using one-way ANOVA. Both the supplements significantly enhance the yield of bacterial cellulose (BC) as compared to the standard Hestrin-Schramm medium (control). Optimization leads to significant increase in BC yield as compared to the control, i.e., the addition, of optimized concentration of lactic acid (0.6%) increases the yield from (0.78 ± 0.026) g to (4.89 ± 0.020) g dry weight, and optimized concentration of ethanol (1%) increases the yield from (0.73 ± 0.057) g to (3.7 ± 0.01) g dry weight. Various physicochemical and mechanical properties of BC films produced in different media (i.e., HS, HS + Ethanol, and HS + Lactic acid), such as the crystallinity, structure, tensile strength, strain at break, Young's modulus, and water holding capacity, were also examined, by employing various techniques such as SEM, FTIR, XRD, etc. BC produced in medium supplemented with the optimum concentration of both the additives were found to possesses higher porosity. Though, slight decline in crystallinity was observed. But the tensile strength and strain at break, were upgraded 1.5-2.5 times, 2-2.5 times, respectively. This article attempted to present a method for enhancing BC yields and characteristics that may lead to more widespread and cost-effective use of this biopolymer.

4.
Int J Biol Macromol ; 246: 125625, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392906

RESUMEN

The major objective of present work was to fabricate poly(hydroxybutyrate) based luminescent films for genuine food packaging applications. These films were synthesized by incorporating varying Chromone (CH) concentrations (5, 10, 15, 20, and 25 wt%) into poly(hydroxybutyrate) (PHB) matrix through solvent-casting. Different characteristics of prepared films were examined using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Mechanical testing, and Time-resolved photoluminescence (TRPL). UV-blocking properties and water vapor permeation were also examined. FTIR spectra indicated the occurrence of hydrogen bonding between PHB and CH. Among all prepared film samples, PHB/CH15 showed maximum tensile strength (22.5 MPa) with enhanced barrier ability against water vapor and UV rays, thermal stability, and luminescent performance. After overall analysis, PHB/CH15 film was selected to investigate its X-ray diffraction, release behavior, DPPH scavenging, and antimicrobial potential. Release kinetics revealed that the cumulative release percentage of CH was higher in fatty acid stimulant. Moreover, results suggested that this film demonstrated antioxidant activity (>55 %) and superior antimicrobial potential against Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Furthermore, packaging of bread samples using PHB/CH15 film demonstrated the complete inhibition of microbial growth in bread up to 10 days of storage and ensure the safety of genuine food products.


Asunto(s)
Antiinfecciosos , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Vapor , Antiinfecciosos/farmacología , Antiinfecciosos/química , Hidroxibutiratos , Antioxidantes/farmacología , Antioxidantes/química
5.
Biotechnol Appl Biochem ; 70(5): 1629-1640, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36964948

RESUMEN

Bacteria are considered mini chemical factories that help us in providing a wide range of products for various purposes. These days, bacterial cellulose (BC) is getting attention by researchers due to its quality, eco-friendly nature, and excellent physical-mechanical qualities. It is being used in the fabrication of nanocomposites. Its nanocomposites can be used in various industries, including medicine, food, leather, textiles, environment, electronics, and cosmetics. This area of research is emerging and still in its infancy stage, as new applications are still coming up. Most of the work on BC has been done during the last two decades and serious inputs are required in this direction in order to make the production process commercially viable and ultimately the application part. Biowastes, such as fruits and vegetables wastes, can be used as a cost-effective medium to minimize the cost for large-scale production of BC-based nanocomposites thus will valorize the biowaste material into a valuable product. Using biowaste as media will also aid in better waste management along with reduction in detrimental environmental effects. This review will help the readers to understand the potential applications of BC and its nanocomposites as well as their vital role in our daily lives.


Asunto(s)
Celulosa , Nanocompuestos , Bacterias , Industrias
6.
Arch Microbiol ; 205(4): 146, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971832

RESUMEN

Rice straw is a suitable alternative to a cheaper carbohydrate source for the production of ethanol. For pretreatment efficiency, different sodium hydroxide concentrations (0.5-2.5% w/v) were tested. When compared to other concentrations, rice straw processed with 2% NaOH (w/v) yielded more sugar (8.17 ± 0.01 mg/ml). An alkali treatment induces effective delignification and swelling of biomass. The pretreatment of rice straw with 2% sodium hydroxide (w/v) is able to achieve 55.34% delignification with 53.30% cellulose enrichment. The current study shows the effectiveness of crude cellulolytic preparation from Aspergillus niger resulting in 80.51 ± 0.4% cellulose hydrolysis. Rice straw hydrolysate was fermented using ethanologenic Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria). Overall, superior efficiency of sugar conversion to ethanol 70.34 ± 0.3% was obtained with the yeast compared to bacterial strain 39.18 ± 0.5%. The current study showed that pretreatment with sodium hydroxide is an effective method for producing ethanol from rice straw and yeast strain S. cerevisiae having greater fermentative potential for bioethanol production than bacterial strain Z. mobilis.


Asunto(s)
Oryza , Zymomonas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Oryza/microbiología , Hidróxido de Sodio , Zymomonas/genética , Zymomonas/metabolismo , Etanol , Fermentación , Celulosa/metabolismo , Carbohidratos , Azúcares , Hidrólisis
7.
Int J Biol Macromol ; 233: 123512, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739047

RESUMEN

The objective of current study was to develop Poly(hydroxybutyrate) (PHB) based active packaging film with long lasting antimicrobial potential in food-packaging applications. For developing such films, PHB was incorporated with poly(ethylene glycol) (PEG) as a plasticizer, nano-silica (n-Si) as strengthening material and clove essential oil (CEO) as an antimicrobial agent. These solvent-casted films with varying concentration of n-Si (0.5, 1, 1.5, 2 %) and 30 % CEO of total polymer matrix weight i.e., PHB/PEG (90/10) were prepared and studied on the basis of morphological, mechanical, thermal, degradation and antimicrobial behaviours. The presence of CEO and n-Si was confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to investigate homogeneous dispersal of n-Si in polymer matrix. PHB/PEG/CEO/Si 1.0 film was selected as optimized one after mechanical testing and therefore further carried for antimicrobial testing. This selected film extended the shelf-life of brown bread up to 10 days comparable to bread wrapped in polyethylene. This revealed that PHB/PEG/CEO/Si 1.0 exhibited superior antibacterial activity against the food borne microbes i.e., Escherichia coli, Staphylococcus aureus and Aspergillus niger. Our findings indicate that this film improved the shelf-life of packaged bread and has promising features for active food packaging.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Syzygium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceite de Clavo/farmacología , Syzygium/química , Pan , Antiinfecciosos/farmacología , Antiinfecciosos/química , Polímeros , Embalaje de Alimentos/métodos , Hidroxibutiratos
8.
Environ Nanotechnol Monit Manag ; 19: 100759, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36447956

RESUMEN

The use of face masks aids to stop the transmission of various deadly communicable ailments, and therefore widespread mask wearing habit is advocated by nearly all health organisations including the WHO to curb the COVID-19 pandemic. Recent studies predicted a shocking requirement of masks globally, approximately billions of masks per week in a single country, and maximum of them are disposable masks, which are made up of nonbiodegradable material such as polypropylene. With expanding review on improper masks disposal, it is imperative to perceive this inherent environmental hazard and avert it from resulting in the subsequent problematic situation due to plastic. The shift towards biodegradable biopolymers alternatives such as bacterial cellulose and newly evolving sustainable scientific knowledge would be significant to dealt with upcoming environmental problem. Bacterial cellulose possesses various desirable properties to replace the conventional mask material. This review gives an overview of data about accumulation of waste masks and its potential harm on environment. It also focuses on diverse characteristics of bacterial cellulose which make it suitable material for making mask and the challenges in the way of bacterial cellulose production and their possible solution. The current review also discussed the report on global bacterial cellulose market growth.

9.
J Biochem Mol Toxicol ; 36(6): e23036, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35289026

RESUMEN

Lead (Pb) is a ubiquitous toxic heavy metal that is known to induce damage to major macromolecules (lipids, proteins, and nucleic acids) by enhancing the level of reactive oxygen species (ROS). Naringenin, a predominant flavonoid primarily found in citrus fruits has attained increasing attention due to its various pharmacological properties. Thus, the present investigation aimed to explore the ameliorative role of naringenin against Pb-induced toxicity in human peripheral blood lymphocytes (PBLs) under in vitro conditions. For this purpose, PBLs were exposed to Pb (350 µg/ml) alone as well in combination with naringenin (10 and 30 µg/ml). Sister chromatid exchange (SCE) and alkaline comet assay were used as genotoxic indices to evaluate the genotoxic and antigenotoxic activity of Pb and naringenin, respectively. Lipid peroxidation (LPO), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH) assays were used as oxidative damage markers. The results revealed that Pb induced a significant (p < 0.05) increase in genetic and oxidative damage as compared with the untreated sample whereas the treatment of cells along with naringenin (10 and 30 µg/ml) and Pb (350 µg/ml) caused a significant reduction in genetic damage and elevation in SOD, GPx, and CAT activities and GSH level, accompanied by a significant reduction in LPO level as compared with Pb alone treated sample. So, the present investigation revealed that naringenin might be used as a protective agent against Pb-induced toxicity due to its antigenotoxic and antioxidative properties.


Asunto(s)
Plomo , Estrés Oxidativo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Flavanonas , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Humanos , Plomo/toxicidad , Peroxidación de Lípido , Linfocitos/metabolismo , Superóxido Dismutasa/metabolismo
10.
Environ Sci Pollut Res Int ; 29(8): 11039-11053, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35022970

RESUMEN

Plastic pollution has become a serious transboundary challenge to nature and human health, with estimation of reports published - predicting a twofold increase in plastic waste by 2030. However, due to the COVID-19 pandemic, the excessive use of single-use plastics (including face masks, gloves and personal protective equipment) would possibly exacerbate such forecasts. The transition towards eco-friendly alternatives like bio-based plastics and new emerging sustainable technologies would be vital to deal with future pandemics, even though the use or consumption of plastics has greatly enhanced our quality of life; it is however critical to move towards bioplastics. We cannot deny the fact that bioplastics have some challenges and shortcomings, but still, it is an ideal option for opt. The circular economy is the need of the hour for waste management. Along with all these practices, individual accountability, corporate intervention and government policy are also needed to prevent us from moving from one crisis to the next. Only through cumulative efforts, we will be able to cope up with this problem. This article collected scattered information and data about accumulation of plastic during COVID-19 worldwide. Additionally, this paper illustrates the substitution of petroleum-based plastics with bio-based plastics. Different aspects are discussed, ranging from advantages to challenges in the way of bioplastics.


Asunto(s)
COVID-19 , Pandemias , Humanos , Plásticos , Calidad de Vida , SARS-CoV-2
11.
J Food Biochem ; 43(7): e12883, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31353713

RESUMEN

Lead (Pb) is a well-known carcinogenic heavy metal. Exposure to Pb induces DNA damage by enhancing the generation of reactive oxygen species (ROS). One of the possible ways to shield DNA from this damage is to supply antioxidants that can remove free radicals generated by genotoxicants. Hence, the current study was designed to evaluate the antigenotoxic potential of a flavonoid compound; morin against Pb-induced genomic damage on cultured human peripheral blood lymphocytes (PBL). The effect of Pb or morin or their combination was evaluated on the DNA damage using comet and sister chromatid exchange (SCE) assays. The results indicated a significant (p < 0.05) increase in the SCE frequency and various comet parameters in a dose-dependent manner upon treatment with lead as compared to control in cultured PBL. Supplementation of morin along with Pb effectively negated DNA damage as measured by SCE frequency and comet parameters. PRACTICAL APPLICATIONS: Results of our current study suggest that the DNA damage induced by genotoxicants can be overcome by co-treatment with natural antioxidants, found in dietary supplements such as vegetables and fruits.


Asunto(s)
Antimutagênicos/farmacología , Daño del ADN/efectos de los fármacos , Flavonoides/farmacología , Plomo/toxicidad , Linfocitos/efectos de los fármacos , Mutágenos/toxicidad , Antioxidantes/farmacología , Células Cultivadas , Humanos , Linfocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
12.
3 Biotech ; 8(5): 232, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29725571

RESUMEN

Chronic exposure of inorganic arsenic compounds is responsible for the manifestation of various tumours as well as other diseases. The principal mechanism behind arsenic toxicity is the induction of a strong oxidative stress with production of free radicals in cells. The present study was aimed to explore the shielding effect of anethole against oxidative damage induced by arsenic in cultured human peripheral blood lymphocytes and the effect of GSTO1 polymorphism. Sister chromatid exchange (SCE) frequency, comet tail moment and lipid peroxidation levels were used as biomarkers to assess the oxidative damage. Heparinised venous blood was collected from healthy individuals and treated with sodium arsenite (50 µM) in the presence of anethole (25 and 50 µM) for the analysis of shielding effect of anethole. For the genotyping of GSTO1, PCR RFLP method was adopted. A significant dose-dependent increase in the frequency of SCEs, tail moment and lipid peroxidation levels, was observed when lymphocytes were treated with sodium arsenite. Anethole in combination with sodium arsenite has shown a dose-dependent significant decrease in the frequency of SCEs, tail moment and lipid peroxidation levels. Genetic polymorphism of GSTO1 was found to effect individual susceptibility towards arsenic-mediated genotoxicity and was found insignificant when antigenotoxic effect of anethole was considered. GSTO1 mutant genotypes were found to have significant higher genotoxicity of sodium arsenite as compared to wild-type genotype. The results of the present study suggest ameliorative effects of anethole against arsenic-mediated genotoxic damage in cultured human peripheral blood lymphocytes. A significant effect of GSTO1 polymorphism was observed on genotoxicity of sodium arsenite.

13.
Mol Cell Biochem ; 440(1-2): 1-9, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28819931

RESUMEN

In the present era, cellular phones have changed the life style of human beings completely and have become an essential part of their lives. The number of cell phones and cell towers are increasing in spite of their disadvantages. These cell towers transmit radiation continuously without any interruption, so people living within 100s of meters from the tower receive 10,000 to 10,000,000 times stronger signal than required for mobile communication. In the present study, we have examined superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, lipid peroxidation assay, and effect of functional polymorphism of SOD and CAT antioxidant genes against mobile tower-induced oxidative stress in human population. From our results, we have found a significantly lower mean value of manganese superoxide dismutase (MnSOD) enzyme activity, catalase (CAT) enzyme activity, and a high value of lipid peroxidation assay in exposed as compared to control subjects. Polymorphisms in antioxidant MnSOD and CAT genes significantly contributed to its phenotype. In the current study, a significant association of genetic polymorphism of antioxidant genes with genetic damage has been observed in human population exposed to radiations emitted from mobile towers.


Asunto(s)
Antioxidantes/metabolismo , Catalasa/sangre , Teléfono Celular , Peroxidación de Lípido , Ondas de Radio/efectos adversos , Superóxido Dismutasa/sangre , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
14.
3 Biotech ; 7(1): 12, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28391474

RESUMEN

The potential of untreated Parthenium hysterophorus weed biomass was evaluated as a substrate for cellulase production. The cellulose in the biomass was used as the main source of carbon. Solid-state fermentation was carried out using Trichoderma reesei, and optimization of cultural conditions was done for maximization of cellulase production. The results revealed that highest cellulase production was achieved on the 8th day of incubation, at 30 °C, keeping solid-to-liquid ratio 1:2 when two discs of inoculum were used per gram of the substrate. The optimized inoculum age was 96 h for CMCase and 120 h for FPase. On studying the enhancing effect of different carbon and nitrogen sources, lactose and ammonium molybdate were found suitable, respectively. The optimized concentration of lactose for the highest CMCase and FPase activities was 1.5 and 1%, respectively. Ammonium molybdate was best at 1% concentration for both CMCase and FPase. Maximum CMCase and FPase activities obtained were 20.49 and 2.42 U/gds, respectively.

15.
Arch Environ Contam Toxicol ; 70(3): 615-25, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26238667

RESUMEN

All over the world, people have been debating about associated health risks due to radiation from mobile phones and mobile towers. The carcinogenicity of this nonionizing radiation has been the greatest health concern associated with mobile towers exposure until recently. The objective of our study was to evaluate the genetic damage caused by radiation from mobile towers and to find an association between genetic polymorphism of GSTM1 and GSTT1 genes and DNA damage. In our study, 116 persons exposed to radiation from mobile towers and 106 control subjects were genotyped for polymorphisms in the GSTM1 and GSTT1 genes by multiplex polymerase chain reaction method. DNA damage in peripheral blood lymphocytes was determined using alkaline comet assay in terms of tail moment (TM) value and micronucleus assay in buccal cells (BMN). There was a significant increase in BMN frequency and TM value in exposed subjects (3.65 ± 2.44 and 6.63 ± 2.32) compared with control subjects (1.23 ± 0.97 and 0.26 ± 0.27). However, there was no association of GSTM1 and GSTT1 polymorphisms with the level of DNA damage in both exposed and control groups.


Asunto(s)
Campos Electromagnéticos , Glutatión Transferasa/genética , Exposición a la Radiación , Monitoreo de Radiación , Daño del ADN , Humanos , Linfocitos , Polimorfismo Genético
16.
Biotechnol Res Int ; 2015: 157139, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26839707

RESUMEN

Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol.

17.
Enzyme Res ; 2015: 279381, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793393

RESUMEN

Lignocellulose is the most abundant biomass on earth. Agricultural, forest, and agroindustrial activities generate tons of lignocellulosic wastes annually, which present readily procurable, economically affordable, and renewable feedstock for various lignocelluloses based applications. Lignocelluloses are the focus of present decade researchers globally, in an attempt to develop technologies based on natural biomass for reducing dependence on expensive and exhaustible substrates. Lignocellulolytic enzymes, that is, cellulases, hemicellulases, and lignolytic enzymes, play very important role in the processing of lignocelluloses which is prerequisite for their utilization in various processes. These enzymes are obtained from microorganisms distributed in both prokaryotic and eukaryotic domains including bacteria, fungi, and actinomycetes. Actinomycetes are an attractive microbial group for production of lignocellulose degrading enzymes. Various studies have evaluated the lignocellulose degrading ability of actinomycetes, which can be potentially implemented in the production of different value added products. This paper is an overview of the diversity of cellulolytic, hemicellulolytic, and lignolytic actinomycetes along with brief discussion of their hydrolytic enzyme systems involved in biomass modification.

18.
Biomed Res Int ; 2013: 952641, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24027767

RESUMEN

The production of poly ß-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14 g h(-1) L(-1), using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297 g/L of poly ß-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management.


Asunto(s)
Carbohidratos/química , Carbono/metabolismo , Hidroxibutiratos/química , Nitrógeno/metabolismo , Poliésteres/química , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Biodegradación Ambiental , Carbono/química , Fermentación , Industrias , Espectroscopía de Resonancia Magnética , Nitrógeno/química , Polímeros/química , Aguas Residuales/química
19.
Org Med Chem Lett ; 3(1): 9, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23981685

RESUMEN

BACKGROUND: Pyrazole and pyrazolone motifs are well known for their wide range of biological activities such as antimicrobial, anti-inflammatory, and antitumor activities. The incorporation of more than one pharmacophore in a single scaffold is a well known approach for the development of more potent drugs. In the present investigation, a series of differently substituted 4-arylidene pyrazole derivatives bearing pyrazole and pyrazolone pharmacophores in a single scaffold was synthesized. RESULTS: The synthesis of novel 4-arylidene pyrazole compounds is achieved through Knovenagel condensation between 1,3-diaryl-4-formylpyrazoles and 3-methyl-1-phenyl-1H-pyrazol-5-(4H)-ones in good yields. All compounds were evaluated for their in vitro antimicrobial activity. CONCLUSIONS: A series of 4-arylidene pyrazole derivatives was evaluated for their in vitro antimicrobial activity against two Gram-positive (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Pseudomonas fluorescens and Escherichia coli), as well as two pathogenic fungal strains (Candida albicans and Saccharomyces cerevisiae). The majority of the compounds displayed excellent antimicrobial profile against the Gram-positive (B. subtilis and S. aureus), and some of them are even more potent than the reference drug ciprofloxacin.

20.
Curr Top Med Chem ; 13(16): 2062-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23895090

RESUMEN

A series of novel derivatives of 1,3-oxazolidin-2-one 12a-12n has been synthesized starting from 4-nitro-(L)- phenylalanine by involving five-step reaction sequence. All the compounds were screened for their in vitro antibacterial activity against four pathogenic bacterial strains namely, Staphylococcus aureus, Bacillus subtilis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative) and in vitro antifungal activity against two pathogenic fungal strains namely, Candida albicans and Saccharomyces cerevisiae. All the synthesized compounds showed activity against Gram-positive bacteria. Compounds 12c and 12l exhibited maximum antibacterial activity against Gram-positive bacteria. However, against Gram-negative bacteria only five of screened compounds were found to be active. Compounds 12c and 12i displayed best antifungal activity against the tested fungi. Docking studies were carried out in order to gain insight into the mechanism of action and the binding mode of these compounds. These studies were in agreement with the biological data.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Diseño de Fármacos , Oxazolidinonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Bacterias/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hongos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxazolidinonas/síntesis química , Oxazolidinonas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA