Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(4): 866-874, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38598723

RESUMEN

The advent of ultra-large libraries of drug-like compounds has significantly broadened the possibilities in structure-based virtual screening, accelerating the discovery and optimization of high-quality lead chemotypes for diverse clinical targets. Compared to traditional high-throughput screening, which is constrained to libraries of approximately one million compounds, the ultra-large virtual screening approach offers substantial advantages in both cost and time efficiency. By expanding the chemical space with compounds synthesized from easily accessible and reproducible reactions and utilizing a large, diverse set of building blocks, we can enhance both the diversity and quality of the discovered lead chemotypes. In this study, we explore new chemical spaces using reactions of sulfur(VI) fluorides to create a combinatorial library consisting of several hundred million compounds. We screened this virtual library for cannabinoid type II receptor (CB2) antagonists using the high-resolution structure in conjunction with a rationally designed antagonist, AM10257. The top-predicted compounds were then synthesized and tested in vitro for CB2 binding and functional antagonism, achieving an experimentally validated hit rate of 55%. Our findings demonstrate the effectiveness of reliable reactions, such as sulfur fluoride exchange, in diversifying ultra-large chemical spaces and facilitate the discovery of new lead compounds for important biological targets.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Receptor Cannabinoide CB2 , Bibliotecas de Moléculas Pequeñas , Ligandos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/efectos de los fármacos , Descubrimiento de Drogas/métodos , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/efectos de los fármacos
2.
J Am Chem Soc ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37733969

RESUMEN

We describe a cascade reaction that selectively incorporates oxygen into the carbon-carbon backbone of alkynes using air as the source. The process starts by lithiating readily available, electron-deficient 1,2,3-triazoles, resulting in an amphoteric lithium ketenimine intermediate. This intermediate can react with both electrophiles and nucleophiles. Under the conditions outlined in this study, we generate azavinyl radicals, which are a rare subset of captodative radicals. When exposed to atmospheric oxygen, these radicals efficiently transform into α-oxygenated amidines─a class of compounds that has not been extensively studied. This process uniquely utilizes molecular oxygen without requiring metal or photocatalysts, and it occurs under mild conditions. Our mechanistic studies provide insights into the intricate sequence involved in the formation and selective capture of azavinyl captodative radicals.

3.
Nat Chem ; 15(6): 764-772, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37217789

RESUMEN

The venerable 1,3-dipolar cycloaddition has been widely used in organic synthesis for the construction of various heterocycles. However, in its century-long history, the simple and omnipresent aromatic phenyl ring has remained a stubbornly unreactive dipolarophile. Here we report 1,3-dipolar cycloaddition between aromatic groups and diazoalkenes, generated in situ from lithium acetylides and N-sulfonyl azides. The reaction results in densely functionalized annulated cyclic sulfonamide-indazoles that can be further converted into stable organic molecules that are important in organic synthesis. The involvement of aromatic groups in the 1,3-dipolar cycloadditions broadens the synthetic utility of diazoalkenes, a family of dipoles that have been little explored so far and are otherwise difficult to access. The process described here provides a route for the synthesis of medicinally relevant heterocycles and can be extended to other arene-containing starting materials. Computational examination of the proposed reaction pathway revealed a series of finely orchestrated bond-breaking and bond-forming events that ultimately lead to the annulated products.

4.
RSC Adv ; 12(19): 11613-11618, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481084

RESUMEN

The first total convergent synthesis of 4(S),5(S)-oxido-17(S)-hydroxy-6(E),8(E),10(Z),13(Z),15(E),19(Z)-docosahexaenoic acid (1) is described. The reported synthesis led to confirmation of the native epoxydocosahexaenoic acid as the biosynthetic precursor of lipid mediators resolvin D3 and resolvin D4. These potent enzymatic products of docosahexaenoic acid (DHA) are important signaling molecules in the resolution of inflammation. A stereocontrolled and chiral pool-based synthetic strategy was employed, with key features including epoxide transposition under basic conditions to form the oxirane ring, and a cis-selective Wittig reaction to secure the target docosahexaenoate backbone.

5.
J Med Chem ; 64(10): 6608-6620, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33974434

RESUMEN

Trichomonas vaginalis causes the most common, nonviral sexually transmitted infection. Only metronidazole (Mz) and tinidazole are approved for treating trichomoniasis, yet resistance is a clinical problem. The gold(I) complex, auranofin, is active against T. vaginalis and other protozoa but has significant human toxicity. In a systematic structure-activity exploration, we show here that diversification of gold(I) complexes, particularly as halides with simple C1-C3 trialkyl phosphines or as bistrialkyl phosphine complexes, can markedly improve potency against T. vaginalis and selectivity over human cells compared to that of the existing antirheumatic gold(I) drugs. All gold(I) complexes inhibited the two most abundant isoforms of the presumed target enzyme, thioredoxin reductase, but a subset of compounds were markedly more active against live T. vaginalis than the enzyme, suggesting that alternative targets exist. Furthermore, all tested gold(I) complexes acted independently of Mz and were able to overcome Mz resistance, making them candidates for the treatment of Mz-refractory trichomoniasis.


Asunto(s)
Antiprotozoarios/química , Complejos de Coordinación/química , Oro/química , Fosfinas/química , Animales , Antiprotozoarios/metabolismo , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Medicamentos/efectos de los fármacos , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Parasitaria , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tricomoniasis/tratamiento farmacológico , Tricomoniasis/parasitología , Trichomonas vaginalis/efectos de los fármacos , Trofozoítos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...