Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(4): e0194266, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29698406

RESUMEN

The RV144 Phase III clinical trial with ALVAC-HIV prime and AIDSVAX B/E subtypes CRF01_AE (A244) and B (MN) gp120 boost vaccine regime in Thailand provided a foundation for the future development of improved vaccine strategies that may afford protection against the human immunodeficiency virus type 1 (HIV-1). Results from this trial showed that immune responses directed against specific regions V1V2 of the viral envelope (Env) glycoprotein gp120 of HIV-1, were inversely correlated to the risk of HIV-1 infection. Due to the low production of gp120 proteins in CHO cells (2-20 mg/L), cleavage sites in V1V2 loops (A244) and V3 loop (MN) causing heterogeneous antigen products, it was an urgent need to generate CHO cells harboring A244 gp120 with high production yields and an additional, homogenous and uncleaved subtype B gp120 protein to replace MN used in RV144 for the future clinical trials. Here we describe the generation of Chinese Hamster Ovary (CHO) cell lines stably expressing vaccine HIV-1 Env antigens for these purposes: one expressing an HIV-1 subtype CRF01_AE A244 Env gp120 protein (A244.AE) and one expressing an HIV-1 subtype B 6240 Env gp120 protein (6240.B) suitable for possible future manufacturing of Phase I clinical trial materials with cell culture expression levels of over 100 mg/L. The antigenic profiles of the molecules were elucidated by comprehensive approaches including analysis with a panel of well-characterized monoclonal antibodies recognizing critical epitopes using Biacore and ELISA, and glycosylation analysis by mass spectrometry, which confirmed previously identified glycosylation sites and revealed unknown sites of O-linked and N-linked glycosylations at non-consensus motifs. Overall, the vaccines given with MF59 adjuvant induced higher and more rapid antibody (Ab) responses as well as higher Ab avidity than groups given with aluminum hydroxide. Also, bivalent proteins (A244.AE and 6240.B) formulated with MF59 elicited distinct V2-specific Abs to the epitope previously shown to correlate with decreased risk of HIV-1 infection in the RV144 trial. All together, these results provide critical information allowing the consideration of these candidate gp120 proteins for future clinical evaluations in combination with a potent adjuvant.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Reacciones Antígeno-Anticuerpo , Células CHO , Cricetinae , Cricetulus , Epítopos/inmunología , Femenino , Glicosilación , Cobayas , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Antígenos VIH/genética , Antígenos VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , VIH-1/inmunología , VIH-1/metabolismo , Humanos , Polisorbatos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Escualeno/inmunología
2.
PLoS Pathog ; 11(10): e1005230, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26485028

RESUMEN

Human Cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer) are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS) coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM) and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Citomegalovirus/inmunología , Epítopos de Linfocito B/inmunología , Proteínas Virales de Fusión/inmunología , Anticuerpos Monoclonales/inmunología , Sitios de Unión , Línea Celular , Cromatografía Liquida , Ensayo de Inmunoadsorción Enzimática , Humanos , Resonancia por Plasmón de Superficie , Espectrometría de Masas en Tándem , Transfección , Internalización del Virus
3.
Indian Dermatol Online J ; 6(Suppl 1): S43-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26904450

RESUMEN

Although candidiasis in newborns is not uncommon, superficial dermatophyte infections of infants is quite rare. The causative agents of neonatal tinea reported in various case studies have been Trichophyton rubrum, Microsporum canis, Microsporum gypseum, and Trichophyton violaceum. To the best of our knowledge, no case report of neonatal tinea faciei caused by Trichophyton mentagrophytes has been reported earlier.

4.
J Virol ; 88(20): 11802-10, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25078705

RESUMEN

Respiratory syncytial virus (RSV) is the leading infectious cause of severe respiratory disease in infants and a major cause of respiratory illness in the elderly. There remains an unmet vaccine need despite decades of research. Insufficient potency, homogeneity, and stability of previous RSV fusion protein (F) subunit vaccine candidates have hampered vaccine development. RSV F and related parainfluenza virus (PIV) F proteins are cleaved by furin during intracellular maturation, producing disulfide-linked F1 and F2 fragments. During cell entry, the cleaved Fs rearrange from prefusion trimers to postfusion trimers. Using RSV F constructs with mutated furin cleavage sites, we isolated an uncleaved RSV F ectodomain that is predominantly monomeric and requires specific cleavage between F1 and F2 for self-association and rearrangement into stable postfusion trimers. The uncleaved RSV F monomer is folded and homogenous and displays at least two key RSV-neutralizing epitopes shared between the prefusion and postfusion conformations. Unlike the cleaved trimer, the uncleaved monomer binds the prefusion-specific monoclonal antibody D25 and human neutralizing immunoglobulins that do not bind to postfusion F. These observations suggest that the uncleaved RSV F monomer has a prefusion-like conformation and is a potential prefusion subunit vaccine candidate. Importance: RSV is the leading infectious cause of severe respiratory disease in infants and a major cause of respiratory illness in the elderly. Development of an RSV vaccine was stymied when a clinical trial using a formalin-inactivated RSV virus made disease, following RSV infection, more severe. Recent studies have defined the structures that the RSV F envelope glycoprotein adopts before and after virus entry (prefusion and postfusion conformations, respectively). Key neutralization epitopes of prefusion and postfusion RSV F have been identified, and a number of current vaccine development efforts are focused on generating easily produced subunit antigens that retain these epitopes. Here we show that a simple modification in the F ectodomain results in a homogeneous protein that retains critical prefusion neutralizing epitopes. These results improve our understanding of RSV F protein folding and structure and can guide further vaccine design efforts.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Epítopos/inmunología , Virus Sincitiales Respiratorios/inmunología , Humanos , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...