Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Health Sci Eng ; 22(1): 65-74, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887772

RESUMEN

Wastewater-based epidemiology (WBE) is considered an innovative and promising tool for estimating community exposure to a wide range of chemical and biological compounds by analyzing wastewater. Despite scholars' interest in WBE studies, there are uncertainties and limitations associated with this approach. This current review focuses on the feasibility of the WBE approach in assessing environmental pollutants, including pesticides, heavy metals, phthalates, bisphenols, and personal care products (PCPs). Limitations and challenges of WBE studies are initially discussed, and then future perspectives, gaps, and recommendations are presented in this review. One of the key limitations of this approach is the selection and identification of appropriate biomarkers in studies. Selecting biomarkers considering the basic requirements of a human exposure biomarker is the most important criterion for validating this new approach. Assessing the stability of biomarkers in wastewater is crucial for reliable comparisons of substance consumption in the population. However, directly analyzing wastewater does not provide a clear picture of biomarker stability. This uncertainty affects the reliability of temporal and spatial comparisons. Various uncertainties also arise from different steps involved in WBE. These uncertainties include sewage sampling, exogenous sources, analytical measurements, back-calculation, and estimation of the population under investigation. Further research is necessary to ensure that measured pollutant levels accurately reflect human excretion. Utilizing data from WBE can support healthcare policy in assessing exposure to environmental pollutants in the general population. Moreover, WBE seems to be a valuable tool for biomarkers that indicate healthy conditions, lifestyle, disease identification, and exposure to pollutants. Although this approach has the potential to serve as a biomonitoring tool in large communities, it is necessary to monitor more metabolites from wastewater to enhance future studies.

2.
Waste Manag ; 180: 76-84, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547758

RESUMEN

Humans are at risk of exposure to phthalates due to the widespread use of plasticized plastics, and one of the major concerns is occupational exposure. The present study investigated occupational exposure to phthalates at one of the greatest solid waste management sites in the second-largest country in the Middle East. Carcinogenic and non-carcinogenic health risks were assessed by human biomonitoring (HBM). The concentration of phthalate esters was determined using gas chromatography-mass spectrometry (GC-MS), and the daily intake (DI) of phthalate was calculated based on the adjusted urinary creatinine concentrations. Moreover, carcinogenic and non-carcinogenic risks were assessed. Monte Carlo simulations were performed for uncertainty and sensitivity analysis. The highest concentration recorded was 130.80 µg/g creatinine for mono-ethyl phthalate (MEP) among the composting group, while the lowest concentration was 0.49 µg/g creatinine for Monobenzyl phthalate (MBzP) among the office group. All estimates of daily intake were below the reference concentration, and differences between the DI at site sections were statistically significant (p < 0.05). The non-carcinogenic risk level was negligible. The excess lifetime cancer risk (ELCR) values corresponding to di-(2-ethylhexyl) phthalate (DEHP) exposure were 2.07E-04 among the composting group and 2.07E-04 among the processing group, posing a definite risk. The carcinogenic risk value among the office group was in a possible risk category with ELCR values of 9.75 E-05. The on-site workers of waste management sites can be highly exposed to phthalates, and their health risk is considerable. Appropriate measures and interventions should be considered to reduce occupational exposure to phthalates.


Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/orina , Monitoreo Biológico , Creatinina/orina , Ácidos Ftálicos/orina , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA