Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Psychopharmacology (Berl) ; 241(1): 139-152, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37758936

RESUMEN

RATIONALE: Tramadol and ethanol, as psychoactive agents, are often abused. Discovering the molecular pathways of drug-induced memory creation may contribute to preventing drug addiction and relapse. OBJECTIVE: The tramadol- and ethanol-induced state-dependent memory (SDM) and cross-SDM retrieval between tramadol and ethanol were examined in this study. Moreover, because of the confirmed involvement of GABAA receptors and GABAergic neurotransmission in memory retrieval impairment, we assessed cross-SDM retrieval between tramadol and ethanol with a specific emphasis on the role of the GABAA receptors. The first hypothesis of this study was the presence of cross-SDM between tramadol and ethanol, and the second hypothesis was related to possible role of GABAA receptors in memory retrieval impairment within the dorsal hippocampus. The cannulae were inserted into the hippocampal CA1 area of NMRI mice, and a step-down inhibitory avoidance test was used to evaluate state dependence and memory recovery. RESULTS: The post-training and/or pre-test administration of tramadol (2.5 and 5 mg/kg, i.p.) and/or ethanol (0.5 and 1 g/kg, i.p.) induced amnesia, which was restored after the administration of the drugs 24 h later during the pre-test period, proposing ethanol and tramadol SDM. The pre-test injection of ethanol (0.25 and 0.5 g/kg, i.p.) with tramadol at an ineffective dose (1.25 mg/kg) enhanced tramadol SDM. Moreover, tramadol injection (1.25 and 2.5 mg/kg) with ethanol at the ineffective dose (0.25 g/kg) promoted ethanol SDM. Furthermore, the pre-test intra-CA1 injection of bicuculline (0.0625, 0.125, and 0.25 µg/mouse), a GABAA receptor antagonist, 5 min before the injection of tramadol (5 mg/kg) or ethanol (1 g/kg) inhibited tramadol- and ethanol-induced SDM dose-dependently. CONCLUSION: The findings strongly confirmed cross-SDM between tramadol and ethanol and the critical role of dorsal hippocampal GABAA receptors in the cross-SDM between tramadol and ethanol.


Asunto(s)
Tramadol , Ratones , Animales , Tramadol/farmacología , Etanol/farmacología , Memoria , Hipocampo , Amnesia/inducido químicamente , Amnesia/metabolismo , Ratones Endogámicos , Reacción de Prevención , Región CA1 Hipocampal , Receptores de GABA-A/metabolismo
2.
Neurochem Res ; 49(2): 363-378, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814133

RESUMEN

Cannabidiol (CBD) is a promising neurological agent with potential beneficial effects on memory and cognitive function. The combination of CBD and topiramate in the treatment of some neurological diseases has been of great interest. Since Topiramate-induced memory loss is a major drawback of its clinical application and the overall effect of the combination of CBD and topiramate on memory is still unclear, here we investigated the effect of CBD on topiramate-induced memory loss and the underlying molecular mechanisms. A one trial step-through inhibitory test was used to evaluate memory consolidation in rats. Moreover, the role of N-methyl-D-aspartate receptors (NMDARs) in the combination of CBD and topiramate in memory consolidation was evaluated through the intra-CA1 administration of MK-801 and NMDA. Western blot analysis was used to evaluate variations in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (pCREB)/CREB ratio in the prefrontal cortex (PFC) and hippocampus (HPC). While the intraperitoneal (i.p.) administration of topiramate (50, 75, and 100 mg/kg) significantly reduced inhibitory time latency, the i.p. administration of CBD (20 and 40 mg/kg) could effectively reverse these effects. Similarly, the sub-effective doses of NMDA plus CBD (10 mg/kg) could improve the topiramate-induced memory loss along with an enhancement in BDNF and pCREB expression in the PFC and HPC. Contrarily, the administration of sub-effective doses of the NMDAR antagonist (MK-801) diminished the protective effects of CBD (20 mg/kg) on topiramate-induced memory loss associated with decreased BDNF and pCREB levels in the PFC and HPC. These findings suggest that CBD can improve topiramate-induced memory impairment, partially by the NMDARs of the PFC and HPC, possibly regulated by the CREB/BDNF signaling pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cannabidiol , Ratas , Animales , Topiramato/uso terapéutico , Topiramato/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Maleato de Dizocilpina/farmacología , Maleato de Dizocilpina/uso terapéutico , Maleato de Dizocilpina/metabolismo , N-Metilaspartato/metabolismo , Hipocampo/metabolismo , Transducción de Señal , Corteza Prefrontal/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Amnesia/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
3.
Iran J Basic Med Sci ; 26(9): 1090-1097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37605729

RESUMEN

Objectives: Lithium and quetiapine are administered simultaneously as a treatment for bipolar disorder. The concurrent use of these two drugs has been observed to affect the neurobiological mechanisms underlying learning and memory. To clarify the precise mechanisms involved, we evaluated the possible role of the dorsal hippocampal CA1 NMDA receptors in the interactive effects of lithium and quetiapine in memory consolidation. Materials and Methods: The dorsal hippocampal CA1 regions of adult male Wistar rats were bilaterally cannulated, and a single-trial step-through inhibitory avoidance apparatus was used to assess memory consolidation. Results: Post-training administration of certain doses of lithium (20, 30, and 40 mg/kg, IP) diminished memory consolidation. Post-training administration of higher doses of quetiapine (5, 10, and 20 mg/kg, IP) augmented memory consolidation. Post-training administration of certain doses of quetiapine (2.5, 5, 10, and 20 mg/kg) dose-dependently restored lithium-induced memory impairment. Post-training microinjection of ineffective doses of the NMDA (10-5 and 10-4 µg/rat, intra-CA1) plus an ineffective dose of quetiapine (2.5 mg/kg) restored the lithium-induced memory impairment. Post-training microinjection of ineffective doses of the noncompetitive NMDA receptor antagonist, MK-801 (0.0625 and 0.0125 µg/rat, intra-CA1), diminished the quetiapine-induced (10 mg/kg) memory improvement in lithium-induced memory impairment. Conclusion: These findings suggest a functional interaction between lithium and quetiapine through hippocampal CA1 NMDA receptor mechanisms in memory consolidation.

4.
Neurobiol Learn Mem ; 192: 107638, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35595026

RESUMEN

Understanding the neurobiological mechanisms of drug-related learning and memory formation may help the treatment of cognitive disorders. Dysfunction of the cannabinoid and serotonergic systems has been demonstrated in learning and memory disorders. The present paper investigates the phenomenon called state-dependent memory (SDM) induced by ACPA (a selective cannabinoid CB1 receptor agonist) and 8-OH-DPAT (a nonselective 5-HT1A receptor agonist) with special focus on the role of the 5-HT1A receptor in the effects of both ACPA and 8-OH-DPAT SDM and cross state-dependent memory retrieval between ACPA and 8-OH-DPAT in a step-down inhibitory avoidance task. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended injection sites. A single-trial step-down inhibitory avoidance task was used to assess memory retrieval and state-dependence. Post-training and/or pre-test microinjections of ACPA (1 and 2 ng/mouse) and 8-OH-DPAT (0.5 and 1 µg/mouse) dose-dependently induced amnesia. Pre-test administration of the same doses of ACPA and 8-OH-DPAT reversed the post-training ACPA- and 8-OH-DPAT-induced amnesia, respectively. This phenomenon has been named SDM. 8-OH-DPAT (1 µg/mouse) reversed the amnesia induced by ACPA (0.5, 1, and 2 ng/mouse) and induced ACPA SDM. ACPA (2 ng/mouse) reversed the amnesia induced by 8-OH-DPAT (0.25, 0.5, and 1 µg/mouse) and induced 8-OH-DPAT SDM. Pre-test administration of a 5-HT1A receptor antagonist, (S)-WAY 100,135 (0.25 and 0.5 µg/mouse), 5 min before ACPA and 8-OH-DPAT dose-dependently inhibited ACPA- and 8-OH-DPAT-induced SDM, respectively. The present study results demonstrated ACPA- and 8-OH-DPAT- induced SDM. Overall, the data revealed that dorsal hippocampal 5-HT1A receptor mechanisms play a pivotal role in modulating cross state-dependent memory retrieval between ACPA and 8-OH-DPAT.


Asunto(s)
Cannabinoides , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Amnesia/inducido químicamente , Animales , Reacción de Prevención , Agonistas de Receptores de Cannabinoides/farmacología , Hipocampo , Masculino , Ratones , Receptor Cannabinoide CB1 , Receptor de Serotonina 5-HT1A
5.
Cancer Chemother Pharmacol ; 86(3): 393-404, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32803467

RESUMEN

PURPOSE: Increased nitric oxide (NO) synthesis and NF-kB activation have been shown as critical players in the pathophysiology of vincristine-induced peripheral neuropathy. Consistently, neural nitric oxide synthase (nNOS) inhibitors alleviated the neuropathic pain. Previous studies demonstrated that aripiprazole is capable of modulating NO synthesis and also has been reported its modulatory effect on NF-kB activity. METHODS: Aripiprazole was administered daily to the male Wistar rats at the same time with establishing neuropathic model by I.P. injection of vincristine every 2 days, over 2 weeks. Efficacy of aripiprazole in suppressing the development of neuropathy was evaluated by assessing changes in body weight, mechanical threshold, withdrawal latency, sciatic nerve conduction velocity (SNCV), and compound motor action potential (CMAP) characteristics. Expression of nNOS and NF-kB activation were evaluated by western blotting RESULTS: Rats receiving aripiprazole during neuropathy establishment period demonstrated a normal weight gain pattern, a significantly higher mechanical withdrawal threshold, and SNCV compared to vincristine-treated group. Furthermore, the amplitude and area of CMAP were significantly higher in aripiprazole group. Western blotting demonstrated a significantly reduced expression of nNOS and NF-kB activation in dorsal root ganglia of aripiprazole co-treated rats. CONCLUSION: In conclusion, aripiprazole effectively prevents from vincristine-induced neuropathy by limiting nNOS overexpression and NF-kB hyperactivation.


Asunto(s)
Aripiprazol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , FN-kappa B/genética , FN-kappa B/metabolismo , Neuralgia/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo I/metabolismo , Nocicepción/efectos de los fármacos , Vincristina/efectos adversos , Animales , Antineoplásicos Fitogénicos/efectos adversos , Agonistas de Dopamina/farmacología , Masculino , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Neuralgia/patología , Óxido Nítrico Sintasa de Tipo I/genética , Ratas , Ratas Wistar
6.
Clin Transl Sci ; 13(4): 785-797, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32027449

RESUMEN

The essential oil from the leaves of Zhumeria majdae Rech. (ZMEO) has been shown to have several beneficial effects in the clinic. In this work we examined the anticonvulsant activities of ZMEO in an experimental mouse model of seizure and aimed to identify any possible underlying mechanisms. ZMEO (5, 10, 20, and 40 mg/kg intraperitoneally (i.p.)) or diazepam, as the reference anticonvulsant drug (25, 50 and 100 µg/kg i.p.), were administered 60 minutes prior to pentylenetetrazol (PTZ) injection (intravenously (i.v.) or i.p.) and changes in threshold, latency, and frequency of clonic seizure were examined. The PTZ i.p.-induced model of seizure was also applied for examining the protective effects of ZMEO pretreatment against PTZ-induced mortality. In some studies, the anticonvulsant effect of the combination of diazepam and ZMEO was also studied. The protective effects of ZMEO against hindlimb tonic extensions (HLTEs) were also examined by maximal electroshock (MES) seizure testing. The γ-aminobutyric acid (GABA)ergic mechanism and nitric oxide (NO) pathway involvement in anticonvulsant activity of ZMEO were assessed by pretreating animals with flumazenil, Nω -nitro-L-arginine methyl ester (L-NAME), aminoguanidine, and L-arginine in a PTZ-induced model of seizure. Administration of 20 mg/kg ZMEO significantly increased chronic seizure threshold and latency while reducing frequency of convulsions and mortality in the PTZ-induced model. In the doses studied, ZMEO could not protect mice from HLTE and mortality induced by MES. Pretreatment with L-arginine and diazepam potentiated the anticonvulsant effects of ZMEO, whereas pretreatment with L-NAME, aminoguanidine, and flumazenil reversed anticonvulsant activity. The anticonvulsant activity of ZMEO may be mediated in part through a GABAergic mechanism and the NO signaling pathway.


Asunto(s)
Anticonvulsivantes/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Salvia/química , Convulsiones/tratamiento farmacológico , Animales , Anticonvulsivantes/aislamiento & purificación , Anticonvulsivantes/uso terapéutico , Arginina/farmacología , Arginina/uso terapéutico , Diazepam/farmacología , Diazepam/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Humanos , Masculino , Ratones , Óxido Nítrico/metabolismo , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/uso terapéutico , Pentilenotetrazol/administración & dosificación , Pentilenotetrazol/toxicidad , Hojas de la Planta/química , Aceites de Plantas/aislamiento & purificación , Aceites de Plantas/uso terapéutico , Convulsiones/inducido químicamente , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA