Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Biology (Basel) ; 12(9)2023 Aug 24.
Article En | MEDLINE | ID: mdl-37759563

Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.

3.
Int J Mol Sci ; 24(5)2023 Feb 26.
Article En | MEDLINE | ID: mdl-36902005

T lymphocytes are key players in adaptive immune responses through the recognition of peptide antigens through the T Cell Receptor (TCR). After TCR engagement, a signaling cascade is activated, leading to T cell activation, proliferation, and differentiation into effector cells. Delicate control of activation signals coupled to the TCR is needed to avoid uncontrolled immune responses involving T cells. It has been previously shown that mice deficient in the expression of the adaptor NTAL (Non-T cell activation linker), a molecule structurally and evolutionarily related to the transmembrane adaptor LAT (Linker for the Activation of T cells), develop an autoimmune syndrome characterized by the presence of autoantibodies and enlarged spleens. In the present work we intended to deepen investigation into the negative regulatory functions of the NTAL adaptor in T cells and its potential relationship with autoimmune disorders. For this purpose, in this work we used Jurkat cells as a T cell model, and we lentivirally transfected them to express the NTAL adaptor in order to analyze the effect on intracellular signals associated with the TCR. In addition, we analyzed the expression of NTAL in primary CD4+ T cells from healthy donors and Rheumatoid Arthritis (RA) patients. Our results showed that NTAL expression in Jurkat cells decreased calcium fluxes and PLC-γ1 activation upon stimulation through the TCR complex. Moreover, we showed that NTAL was also expressed in activated human CD4+ T cells, and that the increase of its expression was reduced in CD4+ T cells from RA patients. Our results, together with previous reports, suggest a relevant role for the NTAL adaptor as a negative regulator of early intracellular TCR signaling, with a potential implication in RA.


Adaptor Proteins, Signal Transducing , Arthritis, Rheumatoid , Humans , Adaptor Proteins, Signal Transducing/metabolism , Jurkat Cells , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Phosphorylation , Receptors, Antigen, T-Cell/metabolism
4.
Front Immunol ; 13: 1054920, 2022.
Article En | MEDLINE | ID: mdl-36569841

The LAT transmembrane adaptor is essential to transduce intracellular signals triggered by the TCR. Phosphorylation of its four C-terminal tyrosine residues (136, 175, 195, and 235 in mouse LAT) recruits several proteins resulting in the assembly of the LAT signalosome. Among those tyrosine residues, the one found at position 136 of mouse LAT plays a critical role for T cell development and activation. The kinetics of phosphorylation of this residue is delayed as compared to the three other C-terminal tyrosines due to a conserved glycine residue found at position 135. Mutation of this glycine into an aspartate residue (denoted LATG135D) increased TCR signaling and altered antigen recognition in human Jurkat T cells and ex vivo mouse T cells. Here, using a strain of LATG135D knockin mice, we showed that the LATG135D mutation modifies thymic development, causing an increase in the percentage of CD4+CD8+ double-positive cells, and a reduction in the percentage of CD4+ and CD8+ single-positive cells. Interestingly, the LATG135D mutation alters thymic development even in a heterozygous state. In the periphery, the LATG135D mutation reduces the percentage of CD8+ T cells and results in a small increment of γδ T cells. Remarkably, the LATG135D mutation dramatically increases the percentage of central memory CD8+ T cells. Finally, analysis of the proliferation and activation of T lymphocytes shows increased responses of T cells from mutant mice. Altogether, our results reinforce the view that the residue preceding Tyr136 of LAT constitutes a crucial checkpoint in T cell development and activation.


Adaptor Proteins, Signal Transducing , Tyrosine , Mice , Animals , Humans , Tyrosine/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Mutation
6.
Cells ; 10(2)2021 02 06.
Article En | MEDLINE | ID: mdl-33562083

Intracellular signaling through the T cell receptor (TCR) is essential for T cell development and function. Proper TCR signaling requires the sequential activities of Lck and ZAP-70 kinases, which result in the phosphorylation of tyrosine residues located in the CD3 ITAMs and the LAT adaptor, respectively. LAT, linker for the activation of T cells, is a transmembrane adaptor protein that acts as a scaffold coupling the early signals coming from the TCR with downstream signaling pathways leading to cellular responses. The leukemic T cell line Jurkat and its derivative mutants J.CaM1.6 (Lck deficient) and J.CaM2 (LAT deficient) have been widely used to study the first signaling events upon TCR triggering. In this work, we describe the loss of LAT adaptor expression found in a subline of J.CaM1.6 cells and analyze cis-elements responsible for the LAT expression defect. This new cell subline, which we have called J.CaM1.7, can re-express LAT adaptor after Protein Kinase C (PKC) activation, which suggests that activation-induced LAT expression is not affected in this new cell subline. Contrary to J.CaM1.6 cells, re-expression of Lck in J.CaM1.7 cells was not sufficient to recover TCR-associated signals, and both LAT and Lck had to be introduced to recover activatory intracellular signals triggered after CD3 crosslinking. Overall, our work shows that the new LAT negative J.CaM1.7 cell subline could represent a new model to study the functions of the tyrosine kinase Lck and the LAT adaptor in TCR signaling, and their mutual interaction, which seems to constitute an essential early signaling event associated with the TCR/CD3 complex.


Adaptor Proteins, Signal Transducing/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Membrane Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Base Sequence , Calcium/metabolism , Cell Survival , Enzyme Activation , Humans , Jurkat Cells , Lentivirus/metabolism , Membrane Proteins/genetics , Plasmids/metabolism , Promoter Regions, Genetic/genetics , Protein Kinase C/metabolism
7.
Front Cell Dev Biol ; 8: 561503, 2020.
Article En | MEDLINE | ID: mdl-33042995

The adaptor LAT plays a crucial role in the transduction of signals coming from the TCR/CD3 complex. Phosphorylation of some of its tyrosines generates recruitment sites for other cytosolic signaling molecules. Tyrosine 132 in human LAT is essential for PLC-γ activation and calcium influx generation. It has been recently reported that a conserved glycine residue preceding tyrosine 132 decreases its phosphorylation kinetics, which constitutes a mechanism for ligand discrimination. Here we confirm that a LAT mutant in which glycine 131 has been substituted by an aspartate (LATG131D) increases phosphorylation of Tyr132, PLC-γ activation and calcium influx generation. Interestingly, the LATG131D mutant has a slower protein turnover while being equally sensitive to Fas-mediated protein cleavage by caspases. Moreover, J.CaM2 cells expressing LATG131D secrete greater amounts of interleukin-2 (IL-2) in response to CD3/CD28 engagement. However, despite this increased IL-2 secretion, J.CaM2 cells expressing the LATG131D mutant are more sensitive to inhibition of IL-2 production by pre-treatment with anti-CD3, which points to a possible role of this residue in the generation of anergy. Our results suggest that the increased kinetics of LAT Tyr132 phosphorylation could contribute to the establishment of T cell anergy, and thus constitutes an earliest known intracellular event responsible for the induction of peripheral tolerance.

8.
Mater Sci Eng C Mater Biol Appl ; 110: 110658, 2020 May.
Article En | MEDLINE | ID: mdl-32204086

Titanium alloy scaffolds with novel interconnected and non-periodic porous bone-like micro architecture were 3D-printed and filled with hydroxyapatite bioactive matrix. These novel metallic-ceramic hybrid scaffolds were tested in vitro by direct-contact osteoblast cell cultures for cell adhesion, proliferation, morphology and gene expression of several key osteogenic markers. The scaffolds were also evaluated in vivo by implanting them on transverse and spinous processes of sheep's vertebras and subsequent histology study. The in vitro results showed that: (a) cell adhesion, proliferation and viability were not negatively affected with time by compositional factors (quantitative MTT-assay); (b) the osteoblastic cells were able to adhere and to attain normal morphology (fluorescence microscopy); (c) the studied samples had the ability to promote and sustain the osteogenic differentiation, matrix maturation and mineralization in vitro (real-time quantitative PCR and mineralized matrix production staining). Additionally, the in vivo results showed that the hybrid scaffolds had greater infiltration, with fully mineralized bone after 6 months, than the titanium scaffolds without bioactive matrix. In conclusion, these novel hybrid scaffolds could be an alternative to the actual spinal fusion devices, due to their proved osteogenic performance (i.e. osteoinductive and osteoconductive behaviour), if further dimensional and biomechanical optimization is performed.


Apatites/pharmacology , Spine/drug effects , Tissue Scaffolds/chemistry , Titanium/pharmacology , Animals , Biomarkers/metabolism , Calcification, Physiologic/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Ceramics/pharmacology , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Gene Expression Regulation/drug effects , Humans , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis/drug effects , Porosity , Sheep
9.
Mater Sci Eng C Mater Biol Appl ; 108: 110404, 2020 Mar.
Article En | MEDLINE | ID: mdl-31923939

Commercial synthetic open-cell foams are an alternative to human cadaveric bone to simulate in vitro different scenarios of bone infiltration properties. Unfortunately, these artificial foams do not reproduce the anisotropic microstructure of natural bone and, consequently, their suitability in these studies is highly questionable. In order to achieve scaffolds that successfully mimic human bone, microstructural studies of both natural porous media and current synthetic approaches are necessary at different length scales. In this line, the present research was conducted to improve the understanding of local anisotropy in natural vertebral bone and synthetic bone-like porous foams. To attain this objective, small volumes of interest within these materials were reconstructed via micro-computed tomography. The anisotropy of the microstructures was analysed by means of both their main local histomorphometric features and the behaviour of an internal flow computed via computational fluid dynamics. The results showed that the information obtained from each of the micro-volumes of interest could be scaled up to understand not only the macroscopic averaged isotropic and/or anisotropic behaviour of the samples studied, but also to improve the design of macroscopic porous implants better fitting specific local histomorphometric scenarios. The results also clarify the discrepancies in the permeability obtained in the different micro-volumes of interest analysed. STATEMENT OF SIGNIFICANCE: A deep insight comparative study between the porous microstructure of healthy vertebral bone and that of synthetic bone-like open-cell rigid foams used in in vitro permeability studies of bone cement has been performed. The results obtained are of fundamental relevance to computational studies because, in order to achieve convergence values, the computation process should be limited to small computation domains or micro-volumes of interest. This makes the results specific spatial dependent and for this reason computation studies cannot directly capture the macroscopic average behaviour of an anisotropic porous structure such as the one observed in natural bones. The results derived from this study are also important because we have been able to show that the specific spatial information contained in only one healthy vertebra is enough to capture, from a geometric point of view, the same information of "specific surface area vs. porosity" - in other words, the same basic law - that can also be found in other human bones for different patients, even at different biological ages. This is an important finding that, despite the efforts made and the controversies formulated by other authors, should be studied more thoroughly with other bone species and tissues (healthy and/or diseased). Moreover, our results should help to understand that, with the extensive capabilities of current 3D printing technologies, there is an enormous potential in the design of biomimetic porous bone-like scaffolds for bone tissue engineering applications.


Bone and Bones/chemistry , Bone and Bones/diagnostic imaging , Viscoelastic Substances/chemistry , Anisotropy , Cadaver , Humans , Models, Anatomic , Printing, Three-Dimensional , Spine/diagnostic imaging , X-Ray Microtomography
11.
Int Orthop ; 43(8): 1873-1882, 2019 08.
Article En | MEDLINE | ID: mdl-30141139

PURPOSE: To study the exact distribution of bone cement around augmented fenestrated pedicle screws in both lumbar and sacral vertebrae of patients with low bone quality. METHODS: A total of 37 patients with instrumented lumbar fusion were investigated. 3D computed tomography virtual models of the injected cement and screws were obtained. The models were computed for their centroid (i.e. their average mass centre point), and their coordinates (x, y, z) were projected on their respective screw-transversal and screw-longitudinal planes for further analysis. RESULTS: The results showed better bone cement homogeneous distribution around the screws in lumbar (L4 and L5) than in sacral (S1) vertebrae. In the lumbar region, the centroids were transversally projected near the transversal centre of symmetry of the screws. On the other hand, in the sacral region, the cement flowed preferentially outside the centre of symmetry of the screws, into the sacral ala. CONCLUSIONS: The results confirm the different flow behaviours of bone cement in lumbar versus sacra vertebrae. The computer methodology followed in this study helps to understand the clinical monitoring observations and lays the foundations for better positioning of the screws and specific vertebrae-oriented screw designs.


Bone Cements/pharmacology , Osteoporosis/surgery , Pedicle Screws , Spinal Diseases/surgery , Spinal Fusion/instrumentation , Aged , Aged, 80 and over , Bone Cements/therapeutic use , Cementation , Computer Simulation , Female , Humans , Imaging, Three-Dimensional , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Male , Middle Aged , Multidetector Computed Tomography , Osteoporosis/diagnostic imaging , Sacrum/diagnostic imaging , Sacrum/surgery , Spinal Diseases/diagnostic imaging , Spinal Fusion/methods
12.
J Nanopart Res ; 20(11): 305, 2018.
Article En | MEDLINE | ID: mdl-30524191

Hydrophilic and homogeneous sub-10 nm blue light-emitting gold nanoparticles (NPs) functionalized with different capping agents have been prepared by simple chemical routes. Structure, average, size, and surface characteristics of these NPs have been widely studied, and the stability of colloidal NP solutions at different pH values has been evaluated. Au NPs show blue PL emission, particularly in the GSH capped NPs, in which the thiol-metal core transference transitions considerably enhance the fluorescent emission. The influence of capping agent and NP size on cytotoxicity and on the fluorescent emission are analyzed and discussed in order to obtain Au NPs with suitable features for biomedical applications. Cytotoxicity of different types of gold NPs has been determined using NPs at high concentrations in both tumor cell lines and primary cells. All NPs used show high biocompatibility with low cytotoxicity even at high concentration, while Au-GSH NPs decrease viability and proliferation of both a tumor cell line and primary lymphocytes.

13.
Front Immunol ; 9: 115, 2018.
Article En | MEDLINE | ID: mdl-29456532

The adaptor protein linker for activation of T cells (LAT) has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT-Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL) in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051). Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT-Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.


Adaptor Proteins, Signal Transducing/metabolism , Amino Acids/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Membrane Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Cell Line , Humans , ZAP-70 Protein-Tyrosine Kinase/metabolism
14.
J Mol Cell Cardiol ; 105: 12-23, 2017 04.
Article En | MEDLINE | ID: mdl-28223221

Endothelial progenitor cells (EPCs) constitute a promising alternative in cardiovascular regenerative medicine due to their assigned role in angiogenesis and vascular repair. In response to injury, EPCs promote vascular remodeling by replacement of damaged endothelial cells and/or by secreting angiogenic factors over the damaged tissue. Nevertheless, such mechanisms need to be further characterized. In the current approach we have evaluated the initial response of early EPCs (eEPCs) from healthy individuals after direct contact with the factors released by carotid arteries complicated with atherosclerotic plaques (AP), in order to understand the mechanisms underlying the neovascularization and remodeling properties assigned to these cells. Herein, we found that the AP secretome stimulated eEPCs proliferation and mobilization ex vivo, and such increase was accompanied by augmented permeability, cell contraction and also an increase of cell-cell adhesion in association with raised vinculin levels. Furthermore, a comparative mass spectrometry analysis of control versus stimulated eEPCs revealed a differential expression of proteins in the AP treated cells, mostly involved in cell migration, proliferation and vascular remodeling. Some of these protein changes were also detected in the eEPCs isolated from atherosclerotic patients compared to eEPCs from healthy donors. We have shown, for the first time, that the AP released factors activate eEPCs ex vivo by inducing their mobilization together with the expression of vasculogenic related markers. The present approach could be taken as a ex vivo model to study the initial activation of vascular cells in atherosclerosis and also to evaluate strategies looking to potentiate the mobilization of EPCs prior to clinical applications.


Endothelial Progenitor Cells/metabolism , Plaque, Atherosclerotic/metabolism , Proteome , Cell Movement , Cell Proliferation , Cell Survival , Cells, Cultured , Humans , Permeability , Plaque, Atherosclerotic/pathology , Proteomics/methods
15.
Front Microbiol ; 8: 2595, 2017.
Article En | MEDLINE | ID: mdl-29354102

Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

16.
J Leukoc Biol ; 100(2): 351-60, 2016 08.
Article En | MEDLINE | ID: mdl-26830332

Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors.


Adaptor Proteins, Signal Transducing/metabolism , B-Lymphocytes/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Fas Ligand Protein/metabolism , fas Receptor/metabolism , B-Lymphocytes/cytology , Cells, Cultured , Humans , Jurkat Cells , Lymphocyte Activation , Phosphorylation , Proteolysis , Signal Transduction , Tyrosine
17.
Talanta ; 144: 1155-62, 2015 Nov 01.
Article En | MEDLINE | ID: mdl-26452941

A miniaturized analyzer encompassing a poly(methyl methacrylate) chip with integrated spectrofluorimetric detection and solutions propelling by a multi-syringe module is proposed. Iodide was determined through its catalytic effect on the reaction between Ce(IV) and As(III). Matrix isopotential synchronous fluorescence was explored to set the excitation and emission wavelengths. A two-level full factorial design allowed to evaluate the significance of variables (Ce(IV), As(III) and H2SO4 concentrations) and their interaction effects in the experimental domain. A Doehlert Matrix was applied to identify the critical values. The optimized procedure showed a linear response from 1 to 100 µg L(-1) (S=53.7+2.61C, in which S is the net fluorescence and C is iodide concentration in µg L(-1)). Detection limit, coefficient of variation (n=6) and sampling rate were estimated at 0.3 µg L(-1), 0.8% and 20 h(-1), respectively. Recoveries within 90-117% were estimated for iodide spiked to seawater samples. The proposed procedure stands out because of the portability, robustness, and simplicity for in-field analysis of iodide in seawater.


Iodides/analysis , Seawater/chemistry , Spectrometry, Fluorescence/instrumentation , Syringes , Arsenic/chemistry , Catalysis , Cesium/chemistry , Hydrodynamics , Iodides/chemistry , Limit of Detection , Multivariate Analysis
18.
Spine (Phila Pa 1976) ; 39(19): 1549-57, 2014 Sep 01.
Article En | MEDLINE | ID: mdl-24921853

STUDY DESIGN: Experimental study to characterize the influence of the cannula geometry on both, the pressure drop and the cement flow velocity established along the cannula. OBJECTIVE: To investigate how the new experimental geometry of cannulas can affect the extravertebral injection pressure and the velocity profiles established along the cannula during the injection process. SUMMARY OF BACKGROUND DATA: Vertebroplasty procedure is being used to treat vertebral compression fractures. Vertebra infiltration is favored by the use of suitable: (1) syringes or injector devices; (2) polymer or ceramic bone cements; and (3) cannulas. However, the clinical use of ceramic bone cement has been limited due to press-filtering problems. Thus, new approaches concerning the cannula geometry are needed to minimize the press-filtering of calcium phosphate-based bone cements and thereby broaden its possible applications. METHODS: Straight, conic, and combined conic-straight new cannulas with different proximal and distal both length and diameter ratios were drawn with computer-assisted design software. The new geometries were theoretically analyzed by: (1) Hagen-Poisseuille law; and (2) computational fluid dynamics. Some experimental models were manufactured and tested for extrusion in order to confirm and further advance the theoretical results. RESULTS: The results confirm that the totally conic cannula model, having proximal to distal diameter ratio equal 2, requires the lowest injection pressure. Furthermore, its velocity profile showed no discontinuity at all along the cannula length, compared with other known combined proximal and distal straight cannulas, where discontinuity was produced at the proximal-distal transition zone. CONCLUSION: The conclusion is that the conic cannulas: (a) further reduced the extravertebral pressure during the injection process; (b) showed optimum fluid flow velocity profiles to minimize filter-pressing problems, especially when ceramic cements are used; and (c) can be easily manufactured. In this sense, the new conic cannulas should favor the use of calcium phosphate bone cements in the spine. LEVEL OF EVIDENCE: N/A.


Bone Cements , Catheters , Computer-Aided Design , Equipment Design , Hydrodynamics , Injections, Spinal , Models, Structural , Pressure , Spine
19.
PLoS One ; 9(1): e85191, 2014.
Article En | MEDLINE | ID: mdl-24465502

Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(low)PD-1(high)TIM-3(high) regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.


CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Forkhead Transcription Factors/metabolism , Hepacivirus/metabolism , Interleukin-10/metabolism , Viral Core Proteins/metabolism , Cell Line , Cell Proliferation , Cells, Cultured , Humans
20.
J Immunol Methods ; 389(1-2): 9-17, 2013 Mar 29.
Article En | MEDLINE | ID: mdl-23261919

Caspase/Granzyme B mediated protein degradation is involved in elimination of activated T cell receptor (TCR) signaling molecules during processes of thymocyte selection and maintenance of peripheral homeostasis of T cells. Key components of TCR signaling cassette including LAT undergo biological inactivation in response to pro-apoptotic or anergy inducing environmental stimuli. Although available Western immunoblotting-based techniques are appropriate for detection of protein degradation in bulk populations of target cells, quantitative assessment of this process at a single cell level requires a different approach. Here we report on a novel, flow cytometry-based method for assessment of LAT integrity. This method exploits a loss of an anti-LAT antibody epitope recognition following proteolytic degradation of C-terminal domain of the LAT. We show that the LAT degradation precedes phosphatidylserine translocation to the outer leaflet of the plasma membrane and thus may constitute an early marker of T cell apoptosis. When used in conjunction with multi-parameter flow cytometry, our method revealed that FoxP3(+)CD4(+)CD8(low) thymocytes i.e. precursors of thymus derived CD4(+) regulatory T cells, in contrast to Foxp3(-)CD4(+)CD8(low) thymocytes are resistant to LAT degradation in response to CD3ε crosslinking. This finding can be used as an additional marker for T regulatory cell lineage.


Adaptor Proteins, Signal Transducing/metabolism , CD4-Positive T-Lymphocytes/metabolism , Caspases/metabolism , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis/immunology , CD4-Positive T-Lymphocytes/enzymology , CD4-Positive T-Lymphocytes/immunology , Caspases/immunology , Epitopes/immunology , Flow Cytometry/methods , Lymphocyte Activation , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phosphoproteins/immunology , Signal Transduction
...