Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Appl Oral Sci ; 30: e20220238, 2022.
Article En | MEDLINE | ID: mdl-36417595

INTRODUCTION: Periodontal diseases (PD) are inflammatory conditions that affect the teeth supporting tissues. Increased body fat tissues may contribute to activation of the systemic inflammatory response, leading to comorbidities. Some studies have shown that individuals with obesity present higher incidence of PD than eutrophics. OBJECTIVE: To investigate the impact of obesity on periodontal tissues and oral microbiota in mice. METHODOLOGY: Two obesity mice models were performed, one using 12 weeks of the dietary protocol with a high-fat (HF) diet in C57BL/6 mice and the other using leptin receptor-deficient mice (db/db-/-), which became spontaneously obese. After euthanasia, a DNA-DNA hybridization technique was employed to evaluate the microbiota composition and topical application of chlorhexidine (CHX), an antiseptic, was used to investigate the impact of the oral microbiota on the alveolar bone regarding obesity. RESULTS: Increased adipose tissue may induce alveolar bone loss, neutrophil recruitment, and changes in the oral biofilm, similar to that observed in an experimental model of PD. Topical application of CHX impaired bone changes. CONCLUSION: Obesity may induce changes in the oral microbiota and neutrophil recruitment, which are associated with alveolar bone loss.


Alveolar Bone Loss , Microbiota , Periodontal Diseases , Mice , Animals , Mice, Inbred C57BL , Obesity/complications , DNA
2.
J. appl. oral sci ; 30: e20220238, 2022. graf
Article En | LILACS-Express | LILACS | ID: biblio-1405378

Abstract Periodontal diseases (PD) are inflammatory conditions that affect the teeth supporting tissues. Increased body fat tissues may contribute to activation of the systemic inflammatory response, leading to comorbidities. Some studies have shown that individuals with obesity present higher incidence of PD than eutrophics. Objective: To investigate the impact of obesity on periodontal tissues and oral microbiota in mice. Methodology: Two obesity mice models were performed, one using 12 weeks of the dietary protocol with a high-fat (HF) diet in C57BL/6 mice and the other using leptin receptor-deficient mice (db/db-/-), which became spontaneously obese. After euthanasia, a DNA-DNA hybridization technique was employed to evaluate the microbiota composition and topical application of chlorhexidine (CHX), an antiseptic, was used to investigate the impact of the oral microbiota on the alveolar bone regarding obesity. Results: Increased adipose tissue may induce alveolar bone loss, neutrophil recruitment, and changes in the oral biofilm, similar to that observed in an experimental model of PD. Topical application of CHX impaired bone changes. Conclusion: Obesity may induce changes in the oral microbiota and neutrophil recruitment, which are associated with alveolar bone loss.

3.
Acta Neuropsychiatr ; 33(4): 206-210, 2021 Aug.
Article En | MEDLINE | ID: mdl-33818338

OBJECTIVE: The aim of this study was to test the hypothesis that synthesis of nitric oxide (NO) and activation of CB1 receptors have opposite effects in a behavioural animal model of panic and anxiety. METHODS: To test the hypothesis, male Wistar rats were exposed to the elevated T-maze (ETM) model under the following treatments: L-Arginine (L-Arg) was administered before treatment with WIN55,212-2, a CB1 receptor agonist; AM251, a CB1 antagonist, was administered before treatment with L-Arg. All treatments were by intraperitoneal route. RESULTS: The CB1 receptor agonist, WIN55,212-2 (1 mg/kg), induced an anxiolytic-like effect, which was prevented by pretreatment with an ineffective dose of L-Arg (1 mg/kg). Administration of AM251 (1 mg/kg), a CB1 antagonist before treatment with L-Arg (1 mg/kg) did not produce anxiogenic-like responses. CONCLUSION: Altogether, this study suggests that the anxiolytic-like effect of cannabinoids may occur through modulation of NO signalling.


Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Behavior, Animal/drug effects , Endocannabinoids/antagonists & inhibitors , Panic/drug effects , Animals , Disease Models, Animal , Locomotion/drug effects , Male , Maze Learning/drug effects , Nitric Oxide , Piperidines , Pyrazoles , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/antagonists & inhibitors
...