Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 312
1.
Traffic Inj Prev ; : 1-10, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717829

OBJECTIVE: One of the main causes of death worldwide among young people are car crashes, and most of these fatalities occur to children who are seated in the front passenger seat and who, at the time of an accident, receive a direct impact from the airbags, which is lethal for children under 13 years of age. The present study seeks to raise awareness of this risk by interior monitoring with a child face detection system that serves to alert the driver that the child should not be sitting in the front passenger seat. METHODS: The system incorporates processing of data collected, elements of deep learning such as transfer learning, fine-tunning and facial detection to identify the presence of children in a robust way, which was achieved by training with a dataset generated from scratch for this specific purpose. The MobileNetV2 architecture was used based on the good performance shown when compared with the Inception architecture for this task; and its low computational cost, which facilitates implementing the final model on a Raspberry Pi 4B. RESULTS: The resulting image dataset consisted of 102 empty seats, 71 children (0-13 years), and 96 adults (14-75 years). From the data augmentation, there were 2,496 images for adults and 2,310 for children. The classification of faces without sliding window gave a result of 98% accuracy and 100% precision. Finally, using the proposed methodology, it was possible to detect children in the front passenger seat in real time, with a delay of 1 s per decision and sliding window criterion, reaching an accuracy of 100%. CONCLUSIONS: Although our 100% accuracy in an experimental environment is somewhat idealized in that the sensor was not blocked by direct sunlight, nor was it partially or completely covered by dirt or other debris common in vehicles transporting children. The present study showed that is possible the implementation of a robust noninvasive classification system made on Raspberry Pi 4 Model B in any automobile for the detection of a child in the front seat through deep learning methods such as Deep CNN.

2.
J Vis ; 24(4): 19, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38652657

Researchers increasingly use virtual reality (VR) to perform behavioral experiments, especially in vision science. These experiments are usually programmed directly in so-called game engines that are extremely powerful. However, this process is tricky and time-consuming as it requires solid knowledge of game engines. Consequently, the anticipated prohibitive effort discourages many researchers who want to engage in VR. This paper introduces the Perception Toolbox for Virtual Reality (PTVR) library, allowing visual perception studies in VR to be created using high-level Python script programming. A crucial consequence of using a script is that an experiment can be described by a single, easy-to-read piece of code, thus improving VR studies' transparency, reproducibility, and reusability. We built our library upon a seminal open-source library released in 2018 that we have considerably developed since then. This paper aims to provide a comprehensive overview of the PTVR software for the first time. We introduce the main objects and features of PTVR and some general concepts related to the three-dimensional (3D) world. This new library should dramatically reduce the difficulty of programming experiments in VR and elicit a whole new set of visual perception studies with high ecological validity.


Software , Virtual Reality , Humans , Reproducibility of Results , Visual Perception/physiology , User-Computer Interface
3.
Opt Lett ; 49(8): 1953-1956, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38621049

We report on the characterization of sub-Doppler resonances detected by probing the 6S1/2 - 7P1/2 transition of the Cs atom at 459 nm in a microfabricated vapor cell. The dependence of the sub-Doppler resonance (linewidth, amplitude) on some key experimental parameters, including the laser intensity and the cell temperature, is investigated. These narrow atomic resonances are of interest for high-resolution spectroscopy and instrumentation and may constitute the basis of a high-stability microcell optical standard.

4.
Adv Biol (Weinh) ; : e2400091, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38616175

Adult stem cells occupy a niche that contributes to their function, but how stem cells rebuild their microenvironment after injury remains an open-ended question. Herein, biomaterial-based systems and metabolic labeling are utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts are observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, muscle stem cells increased nascent matrix deposition with activation kinetics. Reducing the ability to deposit nascent matrix by an inhibitor of vesicle trafficking (Exo-1) attenuated muscle stem cell function and mimicked impairments observed from muscle stem cells isolated from old muscles. Old muscle stem cells are observed to deposit less nascent matrix than young muscle stem cells, which is rescued with therapeutic supplementation of insulin-like growth factors. These results highlight the role of nascent matrix production with muscle stem cell activation.

5.
bioRxiv ; 2024 Mar 03.
Article En | MEDLINE | ID: mdl-38464311

Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. Our analysis revealed slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell behavior and signaling in space.

6.
NPJ Microgravity ; 10(1): 35, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38514677

Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.

7.
Methods Mol Biol ; 2772: 49-75, 2024.
Article En | MEDLINE | ID: mdl-38411806

The plant endoplasmic reticulum forms a network of tubules connected by three-way junctions or sheet-like cisternae. Although the network is three-dimensional, in many plant cells, it is constrained to thin volume sandwiched between the vacuole and plasma membrane, effectively restricting it to a 2-D planar network. The structure of the network, and the morphology of the tubules and cisternae can be automatically extracted following intensity-independent edge-enhancement and various segmentation techniques to give an initial pixel-based skeleton, which is then converted to a graph representation. ER dynamics can be determined using optical flow techniques from computer vision or persistency analysis. Collectively, this approach yields a wealth of quantitative metrics for ER structure and can be used to describe the effects of pharmacological treatments or genetic manipulation. The software is publicly available.


Benchmarking , Endoplasmic Reticulum , Cell Membrane , Food , Plant Cells
8.
bioRxiv ; 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38328131

Adult stem cells occupy a niche that contributes to their function, but how stem cells remodel their microenvironment remains an open-ended question. Herein, biomaterials-based systems and metabolic labeling were utilized to evaluate how skeletal muscle stem cells deposit extracellular matrix. Muscle stem cells and committed myoblasts were observed to generate less nascent matrix than muscle resident fibro-adipogenic progenitors. When cultured on substrates that matched the stiffness of physiological uninjured and injured muscles, the increased nascent matrix deposition was associated with stem cell activation. Reducing the ability to deposit nascent matrix in muscle stem cells attenuated function and mimicked impairments observed from muscle stem cells isolated from old aged muscles, which could be rescued with therapeutic supplementation of insulin-like growth factors. These results highlight how nascent matrix production is critical for maintaining healthy stem cell function.

9.
Res Sq ; 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38410478

Aging is associated with a decline in stem cell functionality and number across the organism. In this study, we aimed to further unravel Muscle Stem Cells (MuSCs) aging by assessing how systemic factors influence MuSC fate decisions through long-term epigenetic landscape remodelling. As aging is intricately linked to a pro-inflammatory shift, we studied the epigenetic effects of inflammatory signals in MuSCs and measured decreased H4K20me1 levels. This loss disrupts MuSC quiescence, largely through epigenetic silencing of Notch target genes. In the setting of inflammatory signals or aging, the lack of Kmt5a and the subsequent absence of de novoH4K20me1 culminate in cell death by ferroptosis. Aged MuSCs manifest abnormal iron metabolism and reduced Gpx4 levels, resulting in the accumulation of intracellular iron, increased reactive oxygen species, genomic instability, and lipid peroxidation. We showed that ferroptosis is the predominant mode of cell death in aged MuSCs, with remarkably high levels of lipid peroxidation; a phenomenon we also observed in aged hematopoietic stem cells. Implementing preventative strategies to inhibit systemic inflammation prevented aged MuSC ferroptosis, preserving their numbers and regenerative capabilities. This intervention significantly enhanced aged muscle regeneration and strength recovery and extended both lifespan and healthspan in mice. This study delineates a previously underappreciated fate trajectory for stem cell aging, and offers meaningful insights into the treatment of age-related disorders.

10.
Cells ; 12(23)2023 11 30.
Article En | MEDLINE | ID: mdl-38067166

Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.


Human Embryonic Stem Cells , Parkinson Disease , Animals , Humans , Dopaminergic Neurons/metabolism , Human Embryonic Stem Cells/metabolism , Haplorhini/metabolism , Mesencephalon/metabolism , Dopamine/metabolism , Parkinson Disease/therapy , Parkinson Disease/metabolism
11.
Elife ; 122023 Dec 22.
Article En | MEDLINE | ID: mdl-38131691

The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.


Docosahexaenoic Acids , Muscular Diseases , Humans , Muscle, Skeletal/physiology , Muscular Diseases/pathology , Fibrosis
12.
Proc Natl Acad Sci U S A ; 120(49): e2315096120, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38011564

Hidradenitis suppurativa (HS) is a complex inflammatory skin disease with undefined mechanistic underpinnings. Here, we investigated HS epithelial cells and demonstrated that HS basal progenitors modulate their lineage restriction and give rise to pathogenic keratinocyte clones, resulting in epidermal hyperproliferation and dysregulated inflammation in HS. When comparing to healthy epithelial stem/progenitor cells, in HS, we identified changes in gene signatures that revolve around the mitotic cell cycle, DNA damage response and repair, as well as cell-cell adhesion and chromatin remodeling. By reconstructing cell differentiation trajectory and CellChat modeling, we identified a keratinocyte population specific to HS. This population is marked by S100A7/8/9 and KRT6 family members, triggering IL1, IL10, and complement inflammatory cascades. These signals, along with HS-specific proinflammatory cytokines and chemokines, contribute to the recruitment of certain immune cells during the disease progression. Furthermore, we revealed a previously uncharacterized role of S100A8 in regulating the local chromatin environment of target loci in HS keratinocytes. Through the integration of genomic and epigenomic datasets, we identified genome-wide chromatin rewiring alongside the switch of transcription factors (TFs), which mediated HS transcriptional profiles. Importantly, we identified numerous clinically relevant inflammatory enhancers and their coordinated TFs in HS basal CD49fhigh cells. The disruption of the S100A enhancer using the CRISPR/Cas9-mediated approach or the pharmacological inhibition of the interferon regulatory transcription factor 3 (IRF3) efficiently reduced the production of HS-associated inflammatory regulators. Our study not only uncovers the plasticity of epidermal progenitor cells in HS but also elucidates the epigenetic mechanisms underlying HS pathogenesis.


Hidradenitis Suppurativa , Humans , Hidradenitis Suppurativa/genetics , Skin/metabolism , Epigenomics , Epigenesis, Genetic , Stem Cells/metabolism , Chromatin/metabolism
13.
Polymers (Basel) ; 15(20)2023 Oct 21.
Article En | MEDLINE | ID: mdl-37896427

Nowadays, biocomposites represent a new generation of materials that are environmentally friendly, cost-effective, low-density, and not derived from petroleum. They have been widely used to protect the environment and generate new alternatives in the polymer industry. In this study, we incorporated untreated jute fibers (UJFs) and alkaline-treated jute fibers (TJFs) at 1-5 and 10 phr into TSR 10 natural rubber as reinforcement fillers. These composites were produced to be used in countersole shoes manufacturing. Untreated fibers were compared to those treated with 10% sodium hydroxide. The alkali treatment allowed the incorporation of fibers without compromising their mechanical properties. The TJF samples exhibited 8% less hardness, 70% more tensile strength, and the same flexibility compared to their pure rubber counterparts. Thanks to their properties and ergonomic appearance, the composites obtained here can be useful in many applications: construction materials (sound insulating boards, and flooring materials), the automotive industry (interior moldings), the footwear industry (shoe soles), and anti-static moldings. These new compounds can be employed in innovative processes to reduce their carbon footprint and negative impact on our planet. Using the Lorenz-Park equation, the loaded composites examined in this study exhibited values above 0.7, which means a competitive load-rubber interaction. Scanning electron microscopy (SEM) was used to investigate the morphology of the composites in detail.

14.
iScience ; 26(10): 108056, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37854703

Mouse studies continue to help elaborate upon the genetic landscape of mammalian disease and the underlying molecular mechanisms. Here, we have investigated an Embigintm1b allele maintained on a standard C57BL/6N background and on a co-isogenic C57BL/6N background in which the Cdh23ahl allele has been "repaired." The hypomorphic Cdh23ahl allele is present in several commonly used inbred mouse strains, predisposing them to progressive hearing loss, starting in high-frequency regions. Absence of the neural cell adhesion molecule Embigin on the standard C57BL/6N background leads to accelerated hearing loss and causes sub-viability, brain and cardiac defects. Contrastingly, Embigintm1b/tm1b mice maintained on the co-isogenic "repaired" C57BL/6N background exhibit normal hearing and viability. Thus Embigin genetically interacts with Cdh23. Importantly, our study is the first to demonstrate an effect of the common Cdh23ahl allele outside of the auditory system, which has important ramifications for genetic studies involving inbred strains carrying this allele.

16.
Heliyon ; 9(6): e17586, 2023 Jun.
Article En | MEDLINE | ID: mdl-37408922

PFAS have demonstrated to affect some aerobic microorganisms applied for wastewater treatment. This study evaluated the nutrient removal of three types of hydrogels containing a consortium of microalgae-bacteria (HB), activated carbon (HC), or both (HBC) in presence of perfluorodecanoic acid (PFDA). The nutrients evaluated were ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), phosphate (PO4), and chemical oxygen demand (COD). Fluorine (F-) concentration and the integrity of HB exposed to PFDA were also determined at the end of experiments to understand the potential sorption and effects of PFDA on hydrogel. The results indicated that the presence of PFDA did affect the nitrification process, 13% and 36% to HB and HBC, respectively. Mass balance confirmed negative impact of PFDA on nitrogen consumption in HB (-31.37%). However, NH4-N was removed by all types of hydrogels in a range of 61-79%, while PO4 was mainly removed by hydrogels containing activated carbon (AC), 37.5% and 29.2% for HC and HBC, respectively. The removal of both NH4 and PO4, was mainly attributed to sorption processes in hydrogels, which was enhanced by the presence of AC. PFDA was also adsorbed in hydrogels, decreasing its concentration between 18% and 28% from wastewater, and up to 39% using HC. Regarding COD concentration, this increased overtime but was not related to hydrogel structure, since Transmission Electron Microscopy imaging revealed that their structure was preserved in presence of PFDA. COD increasement could be attributed to soluble algal products as well as to PVA leaching from hydrogels. In general, the presence of AC in hydrogels can contribute to mitigate the toxic effect of PFDA over microorganisms involved in biological nutrient removal, and hydrogels can be a technique to partially remove this contaminant from aqueous matrices.

17.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37447558

In the last decade, natural fibers have had a significant impact on the research and development of innovative composites made with natural rubber, improving their properties over those of their counterparts that incorporate polluting synthetic fibers. In recent years, this fact has stimulated the research into several modified natural rubber composites reinforced with vegetable fibers. This paper reviews the scientific literature published in the last decade about the properties and characteristics of natural vegetable fibers and natural rubber used in composites. Nowadays the use of alternative materials has become necessary, considering that synthetic materials have caused irreversible damage to the environment, being associated with global warming, for this reason research and development with materials that print a lower carbon footprint during the manufacturing process and subsequent product manufacturing. This review is an invitation to the use of vegetable fibers, as well as vegetable-type matrices, in this case natural rubber as a binder system, it is fantastic to know the different works carried out by other scientists and engineers, in this way to project new compounds linked to innovation in processes that reduce the carbon footprint and its negative impact on our planet.

18.
Angew Chem Int Ed Engl ; 62(34): e202306663, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37391384

In terms of its abundance and its minimal toxicity, iron has advantages relative to other transition metals. Although alkyl-alkyl bond construction is central to organic synthesis, examples of iron-catalyzed alkyl-alkyl couplings of alkyl electrophiles are relatively sparse. Herein we report an iron catalyst that achieves cross-coupling reactions of alkyl electrophiles wherein olefins, in the presence of a hydrosilane, are used in place of alkylmetal reagents. Carbon-carbon bond formation proceeds at room temperature, and the method employs commercially available components (Fe(OAc)2 , Xantphos, and Mg(OEt)2 ); interestingly, this set of reagents can be applied directly to a distinct hydrofunctionalization of olefins, hydroboration. Mechanistic studies are consistent with the generation of an alkyl radical from the alkyl electrophile, as well as with reversibility for elementary steps that precede carbon-carbon bond formation (olefin binding to iron and ß-migratory insertion).

19.
Adv Nanobiomed Res ; 3(4)2023 Apr.
Article En | MEDLINE | ID: mdl-37234365

Brain metastases are the most lethal progression event, in part because the biological processes underpinning brain metastases are poorly understood. There is a paucity of realistic models of metastasis, as current in vivo murine models are slow to manifest metastasis. We set out to delineate metabolic and secretory modulators of brain metastases by utilizing two models consisting of in vitro microfluidic devices: 1) a blood brain niche (BBN) chip that recapitulates the blood-brain-barrier and niche; and 2) a migration chip that assesses cell migration. We report secretory cues provided by the brain niche that attract metastatic cancer cells to colonize the brain niche region. Astrocytic Dkk-1 is increased in response to brain-seeking breast cancer cells and stimulates cancer cell migration. Brain-metastatic cancer cells under Dkk-1 stimulation increase gene expression of FGF-13 and PLCB1. Further, extracellular Dkk-1 modulates cancer cell migration upon entering the brain niche.

20.
ACS Appl Mater Interfaces ; 15(21): 25952-25965, 2023 May 31.
Article En | MEDLINE | ID: mdl-37200218

The capture and storage of CO2 are of growing interest in atmospheric science since greenhouse gas emission has to be reduced considerably in the near future. The present paper deals with the doping of cations on ZrO2, i.e., M-ZrO2 (M = Li+, Mg2+, or Co3+), defecting the crystalline planes for the adsorption of carbon dioxide. The samples were prepared by the sol-gel method and characterized completely by different analytical methods. The deposition of metal ions on ZrO2 (whose crystalline phases: monoclinic and tetragonal are transformed into a single-phase such as tetragonal for LiZrO2 and cubic for MgZrO2 or CoZrO2) shows a complete disappearance of the XRD monoclinic signal, and it is consistent with HRTEM lattice fringes: 2.957 nm for ZrO2 (101, tetragonal/monoclinic), 3.018 nm for tetragonal LiZrO2, 2.940 nm for cubic MgZrO2, and 1.526 nm for cubic CoZrO2. The samples are thermally stable, resulting an average size of ∼5.0-15 nm. The surface of LiZrO2 creates the oxygen deficiency, while for Mg2+ (0.089 nm), since the size of the atom is relatively greater than that of Zr4+ (0.084 nm), the replacement of Zr4+ by Mg2+ in sublattice is difficult; thus, a decrease of the lattice constant was noticed. Since the high band gap energy (ΔE > 5.0 eV) is suitable for CO2 adsorption, the samples were employed for the selective detection/capture of CO2 by using electrochemical impedance spectroscopy (EIS) and direct current resistance (DCR), showing that CoZrO2 is capable of CO2 capture about 75%. If M+ ions are deposited within the ZrO2 matrix, then the charge imbalance allows CO2 to interact with the oxygen species to form CO32- which produces a high resistance (21.04 × 106 (Ω, Ohm)). The adsorption of CO2 with the samples was also theoretically studied showing that the interaction of CO2 with MgZrO2 and CoZrO2 is more feasible than with LiZrO2, subscribing to the experimental data. The temperature effect (273 to 573 K) for the interaction of CO2 with CoZrO2 was also studied by the docking method and observed the cubic structure is more stable at high temperatures as compared to the monoclinic geometry. Thus, CO2 would preferably interact with ZrO2c (ERS = -19.29 kJ/mol) than for ZrO2m (22.4 J/mmol (ZrO2c = cubic; ZrO2m = monoclinic).

...