Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 9(12): e115378, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25531288

RESUMEN

Motoneurons are furnished with a vast repertoire of ionotropic and metabotropic receptors as well as ion channels responsible for maintaining the resting membrane potential and involved in the regulation of the mechanisms underlying its membrane excitability and firing properties. Among them, the GABAA receptors, which respond to GABA binding by allowing the flow of Cl- ions across the membrane, mediate two distinct forms of inhibition in the mature nervous system, phasic and tonic, upon activation of synaptic or extrasynaptic receptors, respectively. In a previous work we showed that furosemide facilitates the monosynaptic reflex without affecting the dorsal root potential. Our data also revealed a tonic inhibition mediated by GABAA receptors activated in motoneurons by ambient GABA. These data suggested that the high affinity GABAA extrasynaptic receptors may have an important role in motor control, though the molecular nature of these receptors was not determined. By combining electrophysiological, immunofluorescence and molecular biology techniques with pharmacological tools here we show that GABAA receptors containing the α6 subunit are expressed in adult turtle spinal motoneurons and can function as extrasynaptic receptors responsible for tonic inhibition. These results expand our understanding of the role of GABAA receptors in motoneuron tonic inhibition.


Asunto(s)
Neuronas Motoras/metabolismo , Receptores de GABA-A/metabolismo , Tortugas/metabolismo , Animales , Secuencia de Bases , Furosemida/farmacología , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Potenciales de la Membrana/efectos de los fármacos , Microscopía Fluorescente , Datos de Secuencia Molecular , Neuronas Motoras/efectos de los fármacos , Muscimol/farmacología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/metabolismo , Médula Espinal/patología
2.
J Neurophysiol ; 110(9): 2175-84, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23966669

RESUMEN

γ-Amino butyric acid (GABA) plays a key role in the regulation of central nervous system by activating synaptic and extrasynaptic GABAA receptors. It is acknowledged that extrasynaptic GABAA receptors located in the soma, dendrites, and axons may be activated tonically by low extracellular GABA concentrations. The activation of these receptors produces a persistent conductance that can hyperpolarize or depolarize nerve cells depending on the Cl(-) equilibrium potential. In an in vitro preparation of the turtle spinal cord we show that extrasynaptic α5GABAA receptors mediate the tonic state of excitability of primary afferents independently of the phasic primary afferent depolarization mediated by synaptic GABAA receptors. Blockade of α5GABAA receptors with the inverse agonist L-655,708 depressed the dorsal root reflex (DRR) without affecting the phasic increase in excitability of primary afferents. Using RT-PCR and Western blotting, we corroborated the presence of the mRNA and the α5GABAA protein in the dorsal root ganglia of the turtle spinal cord. The receptors were localized in primary afferents in dorsal root, dorsal root ganglia, and peripheral nerve terminals using immunoconfocal microscopy. Considering the implications of the DRR in neurogenic inflammation, α5GABAA receptors may serve as potential pharmacological targets for the treatment of pain.


Asunto(s)
Potenciales de Acción , Neuronas GABAérgicas/metabolismo , Ganglios Espinales/fisiología , Neuronas Aferentes/metabolismo , Receptores de GABA-A/metabolismo , Médula Espinal/fisiología , Animales , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de GABA-A/genética , Médula Espinal/metabolismo , Tortugas
3.
Curr Pharm Des ; 19(24): 4485-97, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23360278

RESUMEN

γ-aminobutyric acid (GABA) plays many of its key roles in embryonic development and functioning of the central nervous system (CNS) by acting on ligand gated chloride-permeable channels known as GABAA receptors (GABAAR). Classically, GABAARmediated synaptic communication is tailored to allow rapid and precise transmission of information to synchronize the activity of large populations of cells to generate and maintain neuronal networks oscillations. An alternative type of inhibition mediated by GABAA receptors, initially described about 25 years ago, is characterized by a tonic activation of receptors that react to ambient extracellular GABA. The receptors that mediate this action are wide-spread throughout the nerve cells but are located distant from the sites of GABA release, and therefore they have been called extrasynaptic GABAA receptors. The molecular nature of the extrasynaptic GABAA receptors and the tonic inhibitory current they generate have been characterized in many brain structures, and due to its relevance in controlling neuron excitability they have become attractive pharmacological targets for a variety of neurological disorders such as schizophrenia, epilepsy and Parkinson disease. In the spinal cord, early studies have implicated these receptors in anesthesia, chronic pain, motor control, and locomotion. This review highlights past and present developments in the field of extrasynaptic GABAA receptors and emphasizes their subunit containing distribution and physiological role in the spinal cord.


Asunto(s)
Tronco Encefálico/fisiología , Espacio Extracelular/metabolismo , Receptores de GABA-A , Médula Espinal/fisiología , Vías Aferentes/metabolismo , Vías Aferentes/fisiología , Animales , Tronco Encefálico/metabolismo , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Subunidades de Proteína , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiología , Reflejo/fisiología , Médula Espinal/metabolismo , Sinapsis/metabolismo , Potenciales Sinápticos/fisiología
4.
Biochem Biophys Res Commun ; 412(1): 26-31, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21798246

RESUMEN

GABA(A) receptors mediate synaptic and tonic inhibition in many neurons of the central nervous system. These receptors can be constructed from a range of different subunits deriving from seven identified families. Among these subunits, α(5) has been shown to mediate GABAergic tonic inhibitory currents in neurons from supraspinal nuclei. Likewise, immunohistochemical and in situ hybridization studies have shown the presence of the α(5) subunit in spinal cord neurons, though almost nothing is known about its function. In the present report, using slices of the adult turtle spinal cord as a model system we have recorded a tonic inhibitory current in ventral horn interneurons (VHIs) and determined the functional contribution of the α(5) subunit-containing GABA(A) receptors to this current. Patch clamp studies show that the GABAergic tonic inhibitory current in VHIs is not affected by the application of antagonists of the α(4/6) subunit-containing GABA(A) receptors, but is sensitive to L-655708, an antagonist of the GABA(A) receptors containing α(5) subunits. Last, by using RT-PCR and immunohistochemistry we confirmed the expression of the α(5) subunit in the turtle spinal cord. Together, these results suggest that GABA(A) receptors containing the α(5) subunit mediate the tonic inhibitory currents observed in VHIs.


Asunto(s)
Células del Asta Anterior/fisiología , Interneuronas/fisiología , Receptores de GABA-A/fisiología , Reflejo/fisiología , Animales , Antagonistas de Receptores de GABA-A/farmacología , Imidazoles/farmacología , Técnicas de Placa-Clamp , Tortugas
5.
J Physiol ; 588(Pt 14): 2621-31, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20519320

RESUMEN

There is growing evidence that activation of high affinity extrasynaptic GABA(A) receptors in the brain, cerebellum and spinal cord substantia gelatinosa results in a tonic inhibition controlling postsynaptic excitability. The aim of the present study was to determine if GABA(A) receptors mediating tonic inhibition participate in the modulation of monosynaptic reflex (MSR) in the vertebrate spinal cord. Using an in vitro turtle lumbar spinal cord preparation, we show that conditioning stimulation of a dorsal root depressed the test monosynaptic reflex (MSR) at long condition-test intervals. This long duration inhibition is similar to the one seen in mammalian spinal cord and it is dependent on GABA(A) as it was completely blocked by 20 microm picrotoxin (PTX) or bicuculline (BIC) or 1 microm gabazine, simultaneously depressing the dorsal root potential (DRP) without MSR facilitation. Interestingly 100 microm picrotoxin or BIC potentiated the MSR, depressed the DRP, and produced a long lasting motoneurone after-discharge. Furosemide, a selective antagonist of extrasynaptic GABA(A) receptors, affects receptor subtypes with alpha(4/6) subunits, and in a similar way to higher concentrations of PTX or BIC, also potentiated the MSR but did not affect the DRP, suggesting the presence of alpha(4/6) GABA(A) receptors at motoneurones. Our results suggest that (1) the turtle spinal cord has a GABA(A) mediated long duration inhibition similar to presynaptic inhibition observed in mammals, (2) GABA(A) receptors located at the motoneurones and primary afferents might produce tonic inhibition of monosynaptic reflex, and (3) GABA(A) receptors modulate motoneurone excitability reducing the probability of spurious and inappropriate activation.


Asunto(s)
Receptores de GABA-A/fisiología , Reflejo Monosináptico/fisiología , Médula Espinal/fisiología , Tortugas/fisiología , Animales , Bicuculina/farmacología , Furosemida/farmacología , Antagonistas del GABA/farmacología , Antagonistas de Receptores de GABA-A , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Picrotoxina/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Piridazinas/farmacología , Reflejo Monosináptico/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/fisiología , Ácido gamma-Aminobutírico/fisiología
6.
J Comp Neurol ; 513(2): 188-96, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19127523

RESUMEN

Molecular studies have revealed the presence of R-type voltage-gated Ca(2+) channels at pre- and postsynaptic regions; however, no evidence for the participation of these channels in transmitter release has been presented for the spinal cord. Here we characterize the effects of SNX-482, a selective R channel blocker, on the monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in motoneurons by stimulation of dorsolateral funiculus (DLF) terminals in a slice preparation from the adult turtle spinal cord. SNX-482 inhibited neurotransmission in a dose-dependent manner, with an IC(50) of approximately 9 +/- 1 nM. The EPSP time course and membrane time constant of the motoneurons were not altered, suggesting a presynaptic mechanism. The toxin inhibited the residual component of the EPSPs recorded in the presence of N- and P/Q-type Ca(2+) channel blockers, strongly suggesting a role for the R channels in neurotransmission at the spinal cord DLF terminals. Consistently with this, RT-PCR analysis of turtle spinal cord segments revealed the expression of the Ca(V)2.3 pore-forming (alpha(1E)) subunit of R channels, whereas the use of anti-alpha(1E)-specific antibodies resulted in its localization in the DLF fibers as demonstrated by immunohistochemistry coupled with laser confocal microscopy.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo R/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neuronas Motoras/metabolismo , Inhibición Neural/fisiología , Venenos de Araña/farmacología , Médula Espinal/citología , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Western Blotting , Bloqueadores de los Canales de Calcio/administración & dosificación , Canales de Calcio Tipo R/genética , Canales de Calcio Tipo R/metabolismo , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Inmunohistoquímica , Microscopía Confocal , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Venenos de Araña/administración & dosificación , Médula Espinal/anatomía & histología , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo , Tortugas
7.
J Comp Neurol ; 503(5): 642-54, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17559099

RESUMEN

Presynaptic gamma-aminobutyric acid type B receptors (GABA(B)Rs) regulate transmitter release at many central synapses by inhibiting Ca(2+) channels. However, the mechanisms by which GABA(B)Rs modulate neurotransmission at descending terminals synapsing on motoneurons in the spinal cord remain unexplored. To address this issue, we characterized the effects of baclofen, an agonist of GABA(B)Rs, on the monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in motoneurons by stimulation of the dorsolateral funiculus (DLF) terminals in a slice preparation from the turtle spinal cord. We found that baclofen depressed neurotransmission in a dose-dependent manner (IC(50) of approximately 2 microM). The membrane time constant of the motoneurons did not change, whereas the amplitude ratio of the evoked EPSPs in response to a paired pulse was altered in the presence of the drug, suggesting a presynaptic mechanism. Likewise, the use of N- and P/Q-type Ca(2+) channel antagonists (omega-conotoxin GVIA and omega-agatoxin IVA, respectively) also depressed EPSPs significantly. Therefore, these channels are likely involved in the Ca(2+) influx that triggers transmitter release from DLF terminals. To determine whether the N and P/Q channels were regulated by GABA(B)R activation, we analyzed the action of the toxins in the presence of baclofen. Interestingly, baclofen occluded omega-conotoxin GVIA action by approximately 50% without affecting omega-agatoxin IVA inhibition, indicating that the N-type channels are the target of GABA(B)Rs. Lastly, the mechanism underlying this effect was further assessed by inhibiting G-proteins with N-ethylmaleimide (NEM). Our data show that EPSP depression caused by baclofen was prevented by NEM, suggesting that GABA(B)Rs inhibit N-type channels via G-protein activation.


Asunto(s)
Vías Aferentes/fisiología , Canales de Calcio/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas Motoras/metabolismo , Receptores de GABA-B/fisiología , Médula Espinal/citología , Vías Aferentes/efectos de los fármacos , Vías Aferentes/efectos de la radiación , Animales , Baclofeno/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Etilmaleimida/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Agonistas del GABA/farmacología , Técnicas In Vitro , Neuronas Motoras/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Tortugas/anatomía & histología , omega-Agatoxina IVA/farmacología
8.
Biochem Biophys Res Commun ; 317(2): 551-7, 2004 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-15063793

RESUMEN

Ca2+ influx through voltage-gated Ca2+ channels mediates synaptic transmission at numerous central synapses. However, electrophysiological and pharmacological evidence linking Ca+ channel activity with neurotransmitter release in the vertebrate mature spinal cord is scarce. In the current report, we investigated in a slice preparation from the adult turtle spinal cord, the effects of various Ca+ channel antagonists on neurotransmission at terminals from the dorsolateral funiculus synapsing motoneurons. Bath application of tetrodotoxin or NiCl2 prevented the monosynaptic excitatory postsynaptic potentials (EPSPs), and this effect was mimicked by exposure to a zero-Ca2+ solution. Application of polypeptide toxins that block N- and P/Q-type channels (omega-CTx-GVIA and omega-Aga-IVA) reduced the EPSP amplitude in a dose-dependent manner. By analyzing the input resistance and the EPSP time course, and using a paired pulse protocol we determined that both toxins act at presynaptic level to modulate neurotransmitter release. RT-PCR studies showed the expression of N- and P/Q-type channel mRNAs in the turtle spinal cord. Together, these results indicate that N- and P/Q-type Ca2+ channels may play a central role in the regulation of neurotransmitter release in the adult turtle spinal cord.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Potenciales de la Membrana/fisiología , Neuronas Motoras/fisiología , Neurotransmisores/metabolismo , Médula Espinal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Técnicas de Cultivo , Activación del Canal Iónico/fisiología , Tortugas
9.
J Neurophysiol ; 91(1): 40-7, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14523075

RESUMEN

The role of GABAA and GABAB receptors in modulation of excitatory synaptic transmission between motoneurons and terminals from dorsolateral funiculus (DLF) was studied in in vitro spinal cord slices of adult turtles. Muscimol--a GABAA receptor agonist--depressed the monosynaptic excitatory postsynaptic potential (EPSP) induced by stimulation of the DLF and shortened its duration. The input resistance and the membrane time constant also were strongly reduced. The input membrane resistance, the amplitude, and the half-width of the EPSP were reduced at the same rate in the presence of muscimol. Bicuculline--a GABAA receptor antagonist--increased the EPSPs amplitude and the input membrane resistance. The EPSP amplitude ratio elicited by a paired-pulse protocol did not change significantly. Our results suggest that muscimol acts mainly by activation of postsynaptic GABAA receptors located on the motoneuron and the synaptic strength on motoneurons may be modulated by tonic activation of postsynaptic GABAA receptors. Baclofen--a GABAB receptor agonist--also depressed DLF-motoneuron synaptic transmission. However, it did not affect the falling phase of the EPSPs or the motoneuron membrane time constant but induced a small decrement in input resistance. In the presence of baclofen, the amplitude ratio produced by a paired-pulse protocol increased significantly. This suggests that baclofen decreased the synaptic strength by inhibition of neurotransmitter release from the DLF terminals via activation of presynaptic GABAB receptors.


Asunto(s)
Neuronas Motoras/fisiología , Receptores de GABA/fisiología , Médula Espinal/citología , Sinapsis/fisiología , Animales , Baclofeno/farmacología , Bicuculina/farmacología , Estimulación Eléctrica , Electrofisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Neuronas Motoras/clasificación , Neuronas Motoras/efectos de los fármacos , Muscimol/farmacología , Picrotoxina/farmacología , Médula Espinal/fisiología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Tiempo , Tortugas , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA