Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 34(10): 3512-3542, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35976122

RESUMEN

The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.


Asunto(s)
Embryophyta , Marchantia , Evolución Biológica , Células Germinativas de las Plantas , Marchantia/genética , Filogenia
2.
New Phytol ; 223(2): 575-581, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30920664

RESUMEN

Methylation of DNA is an epigenetic mechanism for the control of gene expression. Alterations in the regulatory pathways involved in the establishment, perpetuation and removal of DNA methylation can lead to severe developmental alterations. Our understanding of the mechanistic aspects and relevance of DNA methylation comes from remarkable studies in well-established angiosperm plant models including maize and Arabidopsis. The study of plant models positioned at basal lineages opens exciting opportunities to expand our knowledge on the function and evolution of the components of DNA methylation. In this Tansley Insight, we summarize current progress in our understanding of the molecular basis and relevance of DNA methylation in the liverwort Marchantia polymorpha.


Asunto(s)
Metilación de ADN/genética , Marchantia/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Marchantia/crecimiento & desarrollo , Modelos Biológicos , ARN de Planta/metabolismo
3.
Plant Cell Physiol ; 59(12): 2421-2431, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30102384

RESUMEN

DNA methylation is an epigenetic mark that ensures silencing of transposable elements (TEs) and affects gene expression in many organisms. The function of different DNA methylation regulatory pathways has been largely characterized in the model plant Arabidopsis thaliana. However, far less is known about DNA methylation regulation and functions in basal land plants. Here we focus on the liverwort Marchantia polymorpha, an emerging model species that represents a basal lineage of land plants. We identified MpMET, the M. polymorpha ortholog of the METHYLTRANSFERASE 1 (MET1) gene required for maintenance of methylation at CG sites in angiosperms. We generated Mpmet mutants using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9) system, which showed a significant loss of CG methylation and severe morphological changes and developmental defects. The mutants developed many adventitious shoot-like structures, suggesting that MpMET is required for maintaining differentiated cellular identities in the gametophyte. Even though numerous TEs were up-regulated, non-CG methylation was generally highly increased at TEs in the Mpmet mutants. Closer inspection of CHG methylation revealed features unique to M. polymorpha. Methylation of CCG sites in M. polymorpha does not depend on MET1, unlike in A. thaliana and Physcomitrella patens. Our results highlight the diversity of non-CG methylation regulatory mechanisms in plants.


Asunto(s)
División Celular/genética , Islas de CpG/genética , Metilación de ADN/genética , Marchantia/citología , Marchantia/genética , Elementos Transponibles de ADN/genética , Genoma de Planta , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...