Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
RSC Adv ; 13(39): 27174-27179, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37701278

In the present work, nanocrystalline Zn-MOF-74 is shown to be a heterogeneous catalyst for the acid-catalyzed ring-opening alcoholysis of cyclohexene oxide. The results corroborated that accessible open metal sites within the material are critical conditions (Zn(ii) Lewis acid sites) for this reaction. Zn-MOF-74 was tested at three different temperatures (30, 40, and 50 °C) for the alcoholysis reaction. Furthermore, the cyclohexene oxide conversion was 94% in less than two days. A comparison of the catalytic activity with different crystal sizes of Zn-MOF-74 and the homogenous phase, zinc acetate, was conducted. Zn-MOF-74 exhibited excellent catalytic cyclability for three cycles without losing its activity. The material showed chemical stability by retaining its crystalline structure after the reaction and cyclability process.

2.
Inorg Chem ; 61(38): 15037-15044, 2022 Sep 26.
Article En | MEDLINE | ID: mdl-36083270

The environmentally benign metal-organic framework (MOF) CUK-1 based on 2,4-pyridine dicarboxylate has been prepared for the first time using Mn(II) as the inorganic node and water as the only solvent. Mn-CUK-1 shows reversible and efficient capture of H2O, SO2, and H2S. Compared to previously studied Co(II) and Mg(II) versions of the same MOF, Mn-CUK-1 also exhibited unique temperature-induced structural flexibility due to organic linker torsion, as detailed by variable-temperature single-crystal X-ray diffraction studies. Owing to this inherent solid-state flexibility, Mn-CUK-1 showed stepwise adsorption for polar gases, which induce structural deformations upon adsorption, while the nonpolar guest adsorbates were reversibly sorbed in a more classical manner. Notably, Mn-CUK-1 demonstrates the highest reported H2S capacity-to-surface area ratio among MOFs that are chemically stable toward this reactive acidic molecule. Moreover, Mn-CUK-1 displays exceptional structural stability in the presence of high relative humidity and corrosive gases and shows soft crystalline behavior triggered by changes in both the adsorption temperature and guest molecule identity.

3.
Materials (Basel) ; 13(8)2020 Apr 14.
Article En | MEDLINE | ID: mdl-32295240

The structure transformation of Mg-CUK-1 due to the confinement of H2O molecules was investigated. Powder X-ray diffraction (PXRD) patterns were collected at different H2O loadings and the cell parameters of the H2O-loaded Mg-CUK-1 material were determined by the Le Bail strategy refinements. A bottleneck effect was observed when one hydrogen-bonded H2O molecule per unit cell (18% relative humidity (RH)) was confined within Mg-CUK-1, confirming the increase in the CO2 capture for Mg-CUK-1.

4.
ACS Appl Mater Interfaces ; 12(16): 18885-18892, 2020 Apr 22.
Article En | MEDLINE | ID: mdl-32233387

The metal-organic framework (MOF)-type MFM-300(Sc) exhibits a combined physisorption and chemisorption capture of H2S, leading to a high uptake (16.55 mmol g-1) associated with high structural stability. The irreversible chemisorbed sulfur species were identified as low-order polysulfide (n = 2) species. The isostructural MFM-300(In) was demonstrated to promote the formation of different polysulfide species, paving the way toward a new methodology to incorporate polysulfides within MOFs for the generation of novel MOF-lithium/sulfur batteries.

5.
Dalton Trans ; 48(24): 8611-8616, 2019 Jun 28.
Article En | MEDLINE | ID: mdl-31070211

The enhancement of CO2 capture due to the confinement of polar molecules within InOF-1 was previously demonstrated. In particular, the presence of MeOH produced 1.30-fold increase in the total CO2 capture. This was explained before with the presence of hydrogen bonds. However, a detailed analysis of the hydrogen bonds among µ2-OH functional groups, MeOH molecules and CO2 molecules was not elucidated; moreover, the possible mechanisms that could explain the enhancement of the capture were also not explained. In this investigation, the density functional theory (DFT) periodic calculations and experimental in situ DRIFTS results allowed us to postulate four plausible CO2 adsorption mechanisms for MeOH-functionalised InOF-1, which described the hydrogen bonds and rationalised the nature of the CO2 capture enhancement.

6.
Dalton Trans ; 47(13): 4639-4645, 2018 Mar 26.
Article En | MEDLINE | ID: mdl-29521389

A greener synthesis of Cu-MOF-74 was obtained, for the first time, in methanol as the unique solvent and at room temperature. Full characterisation of the MOF material showed its purity and also its nanocrystalline nature. Complete activation (150 °C for 1 h and 10-3 bar) of Cu-MOF-74 afforded unsaturated Cu metal sites and this was corroborated by in situ DRIFT spectroscopy. The access to these Cu open metal sites was tested for the catalytic transformation of trans-ferulic acid to vanillin (yield of 71% and 97% selectivity) and a plausible catalytic reaction mechanism was postulated based on quantum chemical calculations.

7.
J Vis Exp ; (113)2016 07 23.
Article En | MEDLINE | ID: mdl-27501027

Vanillin (4-hydoxy-3-methoxybenzaldehyde) is the main component of the extract of vanilla bean. The natural vanilla scent is a mixture of approximately 200 different odorant compounds in addition to vanillin. The natural extraction of vanillin (from the orchid Vanilla planifolia, Vanilla tahitiensis and Vanilla pompon) represents only 1% of the worldwide production and since this process is expensive and very long, the rest of the production of vanillin is synthesized. Many biotechnological approaches can be used for the synthesis of vanillin from lignin, phenolic stilbenes, isoeugenol, eugenol, guaicol, etc., with the disadvantage of harming the environment since these processes use strong oxidizing agents and toxic solvents. Thus, eco-friendly alternatives on the production of vanillin are very desirable and thus, under current investigation. Porous coordination polymers (PCPs) are a new class of highly crystalline materials that recently have been used for catalysis. HKUST-1 (Cu3(BTC)2(H2O)3, BTC = 1,3,5-benzene-tricarboxylate) is a very well known PCP which has been extensively studied as a heterogeneous catalyst. Here, we report a synthetic strategy for the production of vanillin by the oxidation of trans-ferulic acid using HKUST-1 as a catalyst.


Benzaldehydes/chemistry , Catalysis , Coumaric Acids/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Seeds/chemistry , Solvents , Vanilla/chemistry
8.
Materials (Basel) ; 5(5): 872-881, 2012 May 18.
Article En | MEDLINE | ID: mdl-28817013

Benzene alkylation with propylene was studied in the gas phase using a catalytic membrane reactor and a fixed-bed reactor in the temperature range of 200-300 °C and with a weight hourly space velocity (WHSV) of 51 h-1. ß-zeolite was prepared by hydrothermal synthesis using silica, aluminum metal and TEAOH as precursors. The membrane's XRD patterns showed good crystallinity for the ß-zeolite film, while scanning electron microscopy SEM results indicated that its random polycrystalline film was approximately 1 µm thick. The powders' specific area was determined to be 400 m²×g-1 by N2 adsorption/desorption, and the TPD results indicated an overall acidity of 3.4 mmol NH3×g-1. Relative to the powdered catalyst, the catalytic membrane showed good activity and product selectivity for cumene.

...