Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
J Dent ; : 105027, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38679137

OBJECTIVES: This study targets to assess the remineralization capability of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs). METHODS: Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanohardness, Masson's trichrome staining microscopy, and Raman analysis. RESULTS: Dentin surfaces treated with TDg-NPs and load cycled produced higher nanohardness than the rest of the groups at the hybrid layer. At the bottom of the hybrid layer, all samples treated with TDg-NPs showed higher nanohardness than the rest of the groups. Active remineralization underneath the hybrid layer was detected in all groups after TDg application and load cycling, inducting new dentinal tubuli formation. After thermocycling, remineralization at the hybrid layer was not evidenced in the absence of NPs. Raman analysis showed increase mineralization, enriched carbonate apatite formation, and improved crosslinking and scaffolding of the collagen. CONCLUSIONS: Mechanical loading on the specimens obtained after TDg-NPs dentin infiltration inducts an increase of mineralization at the resin/dentin interface, indicating remineralization of peritubular and intertubular dentin with augmented crystallographic maturity in crystals. Enriched collagen quality was produced, generating an adequate matrix organization to promote apatite nucleation, after tideglusib infiltration. CLINICAL SIGNIFICANCE: At the present research, it has been proved the creation of reparative dentin, at the resin-dentin interface, after tideglusib dentin infiltration. Chemical stability, to favor integrity of the resin-dentin interface, is warranted in the presence of the TDg-NPs in the demineralized dentin collagen.

2.
Dent Mater ; 40(3): 393-406, 2024 Mar.
Article En | MEDLINE | ID: mdl-38114343

OBJECTIVES: Tideglusib has shown great performance in terms of dentin regenerative properties. This study aims to evaluate bonding ability, of demineralized dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TG) (TG-NPs). METHODS: Dentin conditioned surfaces were infiltrated with NPs and TG-NPs. Bonded interfaces were created and stored for 24 h and then submitted to mechanical, chemical and thermal challenging. The resin-dentin interface was evaluated through a doubled dye fluorescent technique and a calcium chelator fluorophore under a confocal laser scanning microscopy, and by field emission scanning electron microscopy. RESULTS: Dentin surfaces treated with TG-NPs and load cycled produced higher bond strength than the rest of the groups. Immersion of dentin specimens treated with undoped-NPs in collagenase solution attained the lowest microtensile bond strength (MTBS) values. Both porosity and nanoleakage decreased when dentin was infiltrated with TG-NPs, that revealed strong signals of xylenol orange stain at both hybrid layer and dentinal tubules. The presence of NPs, in general, inducted the presence of mineralized interfaces after mechanical loading and thermocycling. CONCLUSIONS: Nanoparticles doped with tideglusib promoted the highest dentin bonding efficacy among groups, as they facilitated the maximum bond strength values with creation of mineral deposits at the hybrid layer and dentinal walls. Tideglusib enabled scarce porosity, nanoleakage and advanced sealing among dentin groups. SIGNIFICANCE: Doping hydrophilic polymeric NPs with tideglusib, infiltrated in etched dentin represents a reproducible technique to create reparative dentin at the resin-dentin interface, by inducing therapeutic bioactivity.


Dental Bonding , Dental Cements , Thiadiazoles , Dental Cements/chemistry , Resin Cements/chemistry , Glycogen Synthase Kinase 3/analysis , Dentin-Bonding Agents/chemistry , Tensile Strength , Dentin/chemistry , Microscopy, Electron, Scanning , Materials Testing
3.
J Dent ; 130: 104447, 2023 03.
Article En | MEDLINE | ID: mdl-36754111

OBJECTIVES: Bioactive materials have been used for functionalization of adhesives to promote dentin remineralization. This study aims to evaluate bonding ability and both mechanical and chemical behavior of demineralized dentin infiltrated with polymeric nanoparticles doped with dexamethasone (Dex-NPs). METHODS: Dentin conditioned surfaces were infiltrated with NPs, Dex-NPs or Dex-Zn-NPs. Bonded interfaces were also created and stored for 24 h or 21d, and then submitted to microtensile bond strength testing. Dentin remineralization was analyzed by Nanohardness, Young's modulus and Raman analysis. RESULTS: At 21d of storage, dentin treated with undoped-NPs attained the lowest nanohardness and Young's modulus. Dex-NPs and Zn-Dex-NPs increased dentin nanohardness and Young's modulus after 21d Raman analysis showed high remineralization, crystallinity, crosslinking and better structure of collagen when functionalized Dex-NPs were present at the dentin interface. CONCLUSIONS: Infiltration of dentin with Dex-NPs promoted functional remineralization as proved by nanomechanical and morpho-chemical evaluation tests. Dexamethasone in dentin facilitated crystallographic maturity, crystallinity and improved maturity and secondary structure of dentin collagen. CLINICAL SIGNIFICANCE: Using dexamethasone-functionalized NPs before resin infiltration is a clear option to obtain dentin remineralization, as these NPs produce the reinforcement of the dentin structure, which will lead to the improvement of the longevity of resin restorations.


Dental Bonding , Nanoparticles , Humans , Dental Cements/chemistry , Nanoparticles/chemistry , Collagen , Dentin/chemistry , Tensile Strength , Dexamethasone/analysis , Materials Testing , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry
4.
Dent Mater ; 39(1): 41-56, 2023 01.
Article En | MEDLINE | ID: mdl-36460577

OBJECTIVE: To investigate the effect of novel polymeric nanoparticles (NPs) doped with dexamethasone (Dex) on viscoelasticity, crystallinity and ultra-nanostructure of the formed hydroxyapatite after NPs dentin infiltration. METHODS: Undoped-NPs, Dex-doped NPs (Dex-NPs) and zinc-doped-Dex-NPs (Zn-Dex-NPs) were tested at dentin, after 24 h and 21 d. A control group without NPs was included. Coronal dentin surfaces were studied by nano-dynamic mechanical analysis measurements, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS: At 21 d of storage time, both groups doped with Dex exhibited the highest complex, storage and loss moduli among groups. Zn-Dex-NPs and Dex-NPs promoted the highest and lowest tan delta values, respectively. Dex-NPs contributed to increase the fibril diameters of dentin collagen over time. Dentin surfaces treated with Zn-Dex-NPs attained the lowest nano-roughness values, provoked the highest crystallinity, and produced the longest and shortest crystallite and grain size. These new crystals organized with randomly oriented lattices. Dex-NPs induced the highest microstrain. Crystalline and amorphous matter was present in the mineral precipitates of all groups, but Zn and Dex loaded NPs helped to increase crystallinity. SIGNIFICANCE: Dentin treated with Zn-Dex-NPs improved crystallographic and atomic order, providing structural stability, high mechanical performance and tissue maturation. Amorphous content was also present, so high hydroxyapatite solubility, bioactivity and remineralizing activity due to the high ion-rich environment took place in the infiltrated dentin.


Nanoparticles , Tooth Remineralization , Zinc , Humans , Dentin/chemistry , Dexamethasone/pharmacology , Dexamethasone/analysis , Durapatite/pharmacology , Nanoparticles/chemistry , Polymers , Zinc/pharmacology
5.
Article En | MEDLINE | ID: mdl-35682086

Research has been conducted into the advantages of the systemic administration of antibiotics. The aim of this systematic review and meta-analysis was to assess the efficacy of systemic antibiotic administration in the treatment of peri-implantitis in terms of bleeding on probing (BoP) and probing pocket depth (PPD). Literature searches were performed across PubMed, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) to identify randomized controlled trials and observational clinical studies. After peri-implantitis treatment, PPD was reduced by 0.1 mm (p = 0.58; IC 95% [-0.24, 0.47]), indicating a non-significant effect of antibiotic administration on PPD. The BoP odds ratio value was 1.15 (p = 0.5; IC 95% [0.75, 1.75]), indicating that the likelihood of bleeding is almost similar between the test and control groups. Secondary outcomes were found, such as reduced clinical attachment level, lower suppuration and recession, less bone loss, and a reduction in total bacterial counts. In the treatment of peri-implantitis, the systemic antibiotic application reduces neither PPD nor BoP. Therefore, the systemic administration of antibiotics, in the case of peri-implantitis, should be rethought in light of the present results, contributing to address the problem of increasing antibiotic resistance.


Peri-Implantitis , Humans , Anti-Bacterial Agents/therapeutic use , Bacterial Load , Peri-Implantitis/drug therapy , Treatment Outcome
6.
Dent Mater ; 37(11): 1698-1713, 2021 11.
Article En | MEDLINE | ID: mdl-34544591

OBJECTIVE: To investigate the effect of novel polymeric nanoparticles (NPs) doped with melatonin (ML) on nano-hardness, crystallinity and ultrastructure of the formed hydroxyapatite after endodontic treatment. METHODS: Undoped-NPs and ML-doped NPs (ML-NPs) were tested at radicular dentin, after 24 h and 6 m. A control group without NPs was included. Radicular cervical and apical dentin surfaces were studied by nano-hardness measurements, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS: Cervical dentin treated with undoped NPs maintained its nano-hardness values after 6 m of storage being [24 h: 0.29 (0.01); 6 m: 0.30 (0.02) GPa], but it decreased at apical dentin [24 h: 0.36 (0.01); 6 m: 0.28 (0.02) GPa]. When ML-NPs were used, nano-hardness was similar over time [24h: 0.31 (0.02); 6 m: 0.28 (0.03) GPa], at apical dentin. Root dentin treated with ML-NPs produced, in general, high crystallinity of new minerals and thicker crystals than those produced in the rest of the groups. After 6 m, crystals became organized in randomly oriented polyhedral, square polygonal block-like apatite or drop-like apatite polycrystalline lattices when ML-NPs were used. Undoped NPs generated poor crystallinity, with preferred orientation of small crystallite and increased microstrain. SIGNIFICANCE: New polycrystalline formations encountered in dentin treated with ML-NPs may produce structural dentin stability and high mechanical performance at the root. The decrease of mechanical properties over time in dentin treated without NPs indicates scarce remineralization potential, dentin demineralization and further potential degradation. The amorphous stage may provide high hydroxyapatite solubility and remineralizing activity.


Melatonin , Nanoparticles , Apatites , Dentin , Humans , Polymers
7.
Dent Mater ; 37(7): 1107-1120, 2021 07.
Article En | MEDLINE | ID: mdl-33846017

OBJECTIVES: To investigate the effectiveness of novel polymeric nanoparticles (NPs) doped with melatonin (ML) in reducing dentin permeability and facilitating dentin remineralization after endodontic treatment. METHODS: The effect of undoped NPs and ML-doped NPs (ML-NPs) was tested in radicular dentin, at 24 h and 6 m. A control group without NPs was included. ML liberation was measured. Radicular dentin was assessed for fluid filtration. Dentin remineralization was analyzed by scanning electron microscopy, AFM, Young's modulus (Ei), Nano DMA-tan delta, and Raman analysis. RESULTS: ML release ranged from 1.85 mg/mL at 24 h to 0.033 mg/mL at 28 d. Both undoped NPs and ML-NPs treated dentin exhibited the lowest microleakage, but samples treated with ML-NPs exhibited hermetically sealed dentinal tubules and extended mineral deposits onto dentin. ML-NPs promoted higher and durable Ei, and functional remineralization at root dentin, generating differences between the values of tan delta among groups and creating zones of stress concentration. Undoped-NPs produced closure of some tubules and porosities at the expense of a relative mineral amorphization. Chemical remineralization based on mineral and organic assessments was higher in samples treated with ML-NPs. When using undoped NPs, precipitation of minerals occurred; however, radicular dentin was not mechanically reinforced but weakened over time. SIGNIFICANCE: Application of ML-NPs in endodontically treated teeth, previous to the canal filling step, is encouraged due to occlusion of dentinal tubules and the reinforcement of the radicular dentin structure.


Melatonin , Nanoparticles , Dentin , Microscopy, Electron, Scanning , Polymers , Tooth Root
8.
J Dent ; 107: 103616, 2021 04.
Article En | MEDLINE | ID: mdl-33636241

OBJECTIVES: The aim was to state the different applications and the effectiveness of polymeric zinc-doped nanoparticles to achieve dentin remineralization. DATA, SOURCES AND STUDY SELECTION: Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken. CONCLUSIONS: Polymeric nanospheres (NPs) were efficiently loaded with zinc. NPs sequestered calcium and phosphate in the presence of silicon, and remained effectively embedded at the hybrid layer. NPs incorporation did not alter bond strength and inhibited MMP-mediated dentin collagen degradation. Zn-loaded NPs remineralized the hybrid layer inducing a generalized low-carbonate substitute apatite precipitation, chemically crystalline with some amorphous components, and an increase in mechanical properties was also promoted. Viscoelastic analysis determined that dentin infiltrated with Zn-NPs released the stress by breaking the resin-dentin interface and creating specific mineral formations in response to the energy dissipation. Bacteria were scarcely encountered at the resin-dentin interface. The combined antibacterial and remineralizing effects, when Zn-NPs were applied, reduced biofilm formation. Zn-NPs application at both cervical and radicular dentin attained the lowest microleakage and also promoted durable sealing ability. The new zinc-based salt minerals generated covered the dentin surface totally occluding cracks, porosities and dentinal tubules. CLINICAL SIGNIFICANCE: Zinc-doped NPs are proposed for effective dentin remineralization and tubular occlusion. This offers new strategies for regeneration of eroded cervical dentin, effective treatment of dentin hypersensitivity and in endodontically treated teeth previous to the canal filling. Zn-NPs also do reduce biofilm formation due to antibacterial properties.


Nanoparticles , Zinc , Dentin , Dentistry , Polymers
9.
J Mech Behav Biomed Mater ; 114: 104232, 2021 02.
Article En | MEDLINE | ID: mdl-33290910

The objective was to state zinc contribution in the effectiveness of novel zinc-doped dentin cements to achieve dentin remineralization, throughout a literature or narrative exploratory review. Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. Both zinc-doping silicate and hydroxyapatite-based cements provoked an increase of both bioactivity and intrafibrillar mineralization of dentin. Zinc-doped hydroxyapatite-based cements (oxipatite) also induced an increase in values of dentin nano-hardness, Young's modulus and dentin resistance to deformation. From Raman analyses, it was stated higher intensity of phosphate peaks and crystallinity as markers of dentin calcification, in the presence of zinc. Zinc-based salt formations produced low microleakage and permeability values with hermetically sealed tubules at radicular dentin. Dentin treated with oxipatite attained preferred crystal grain orientation with polycrystalline lattices. Thereby, oxipatite mechanically reinforced dentin structure, by remineralization. Dentin treated with oxipatite produced immature crystallites formations, accounting for high hydroxyapatite solubility, instability and enhanced remineralizing activity.


Dentin , Hydroxyapatites , Biophysics , Silicates/pharmacology , Zinc
10.
Acta Biomater ; 111: 316-326, 2020 07 15.
Article En | MEDLINE | ID: mdl-32439613

The objective was to assess doxycycline (Dox) and zinc (Zn) doped nanoparticles' (NPs) potential to protect the resin-dentin interface from cariogenic biofilm. Three groups of polymeric NPs were tested: unloaded, loaded with zinc and with doxycycline. NPs were applied after dentin etching. The disks were exposed to a cariogenic biofilm challenge in a Drip-Flow Reactor during 72 h and 7 d. Half of the specimens were not subjected to biofilm formation but stored 72 h and 7 d. LIVE/DEAD® viability assay, nano-dynamic mechanical assessment, Raman spectroscopy and field emission electron microscopy (FESEM) analysis were performed. The measured bacterial death rates, at 7 d were 46% for the control group, 51% for the undoped-NPs, 32% for Dox-NPs, and 87% for Zn-NPs; being total detected bacteria reduced five times in the Dox-NPs group. Zn-NPs treated samples reached, in general, the highest complex modulus values at the resin-dentin interface over time. Regarding the mineral content, Zn-NPs-treated dentin interfaces showed the highest mineralization degree associated to the phosphate peak and the relative mineral concentration. FESEM images after Zn-NPs application permitted to observe remineralization of the etched and non-resin infiltrated collagen layer, and bacteria were scarcely encountered. The combined antibacterial and remineralizing effects, when Zn-NPs were applied, reduced biofilm formation. Dox-NPs exerted an antibacterial role but did not remineralize the bonded interface. Undoped-NPs did not improve the properties of the interfaces. Application of Zn-doped NPs during the bonding procedure is encouraged. STATEMENT OF SIGNIFICANCE: Application of Zn-doped nanoparticles on acid etched dentin reduced biofilm formation and viability at the resin-dentin interface due to both remineralization and antibacterial properties. Doxycycline-doped nanoparticles also diminished oral biofilm viability, but did not remineralize the resin-dentin interface.


Dental Bonding , Nanoparticles , Biofilms , Dentin , Dentin-Bonding Agents/pharmacology , Materials Testing , Polymers , Resin Cements/pharmacology , Tensile Strength , Zinc
11.
J Mech Behav Biomed Mater ; 103: 103606, 2020 03.
Article En | MEDLINE | ID: mdl-32090933

The effectiveness of novel polymeric nanoparticles (NPs) application in reducing dentin permeability and facilitating dentin remineralization after endodontic treatment was evaluated. The effect of undoped NPs, zinc, calcium and doxycycline-doped NPs (Zn-NPs, Ca-NPs and D-NPs, respectively) was tested in radicular dentin. A control group without NPs was included. Radicular dentin was assessed for fluid filtration. Dentin remineralization was analyzed by scanning and transmission electron microscopy, energy-dispersive analysis, AFM, Young's modulus (Ei), Nano DMA, Raman, and X-Ray Diffraction analysis. Ca-NPs and Zn-NPs treated dentin exhibited the lowest microleakage with hermetically sealed dentinal tubules and a zinc-based salt generation onto dentin. Zn-NPs favored crystallinity and promoted the highest Ei and functional remineralization at the apical dentin, generating differences between the values of complex modulus among groups. Ca-NPs produced closure of tubules and porosities at the expense of a relative mineral amorphization, without creating zones of stress concentration. The highest sealing efficacy was obtained in Zn-NPs-treated samples, along with the highest values of Young's modulus and dentin mineralization. These high values of Ei were obtained by closing voids, cracks, pores and tubules, and by strengthening the root dentin. When using undoped NPs or Ca-NPs, deposition of minerals occurred, but radicular dentin was not mechanically reinforced. Therefore, application of Zn-NPs in endodontically treated teeth previous to the canal filling is encouraged.


Dentin , Nanoparticles , Microscopy, Electron, Scanning , Polymers , Tooth Root , Zinc
12.
Clin Oral Investig ; 24(1): 285-299, 2020 Jan.
Article En | MEDLINE | ID: mdl-31102048

OBJECTIVE: The aim of this study was to evaluate the remineralization ability of three endodontic sealer materials at different root dentin regions. MATERIAL AND METHODS: Cervical, medial, and apical root dentin surfaces were treated with two experimental hydroxyapatite-based cements, containing sodium hydroxide (calcypatite) or zinc oxide (oxipatite); an epoxy resin-based canal sealer, AH Plus; and gutta-percha. Remineralization, at the inner and outer zones of dentin disk surfaces, was studied by nanohardness (Hi) and Raman analysis. Nanoroughness and collagen fibrils width measurements were performed. Numerical data, at 24 h or 12 m, were analyzed by ANOVA and Student-Newman-Keuls (p < 0.05). RESULTS: At the outer and inner zones of the cervical dentin treated with oxipatite, the highest Hi after 12 m of immersion was achieved. The same group showed the highest intensity of phosphate peak, markers for calcification and crystallinity. Nanoroughness was lower and fibril diameter was higher at the inner zone of the dentin treated with oxipatite. Dentin mineralization occurred in every region of the root dentin treated with oxipatite and calcypatite, especially at the inner zone of the dentin after 12 m. CONCLUSIONS: Oxipatite reinforced the inner root zone at any third of the radicular dentin, by increasing both nanohardness and remineralization. When using calcypatite, the highest nanohardness was found at the apical third of the inner root dentin, but the lowest mechanical performance was obtained at the cervical and the medial thirds of the roots. Therefore, application of oxipatite as sealing cement of root canals is recommended. CLINICAL RELEVANCE: Oxipatite, when used as an endodontic sealing material, strengthens radicular dentin.


Dental Bonding , Durapatite , Root Canal Filling Materials , Zinc Oxide , Dental Pulp Cavity , Dentin , Epoxy Resins , Gutta-Percha , Humans , Hydroxyapatites , Materials Testing
13.
Dent Mater ; 36(1): 167-178, 2020 01.
Article En | MEDLINE | ID: mdl-31818525

OBJECTIVE: To investigate crystallinity and ultrastructure of the formed hydroxyapatite at radicular cervical and apical dentin after being treated with three different canal sealers. METHODS: Cervical and apical root dentin surfaces were treated with two experimental hydroxyapatite-based sealers, containing sodium hydroxide (calcypatite) or zinc oxide (oxipatite) and an epoxy resin-based canal sealer (AH Plus); gutta-percha without sealer was included as control. Dentin surfaces were studied by X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-field imaging after 24h and 12m of storage. RESULTS: Root cervical dentin treated with calcypatite and oxipatite produced poor crystallinity of new minerals, wide amorphous phase and non-stoichiometry. Reflections at the 002 plane and the corresponding diffraction rings attained lower values in the Scherrer equation and the Scherrer-Wilson equation in samples treated with both HAp-based sealers than in specimens without sealer or with AH Plus. At root cervical dentin treated with calcypatite, shorter and wider crystallite size formations and lower crystals grain size were found, if compared to those encountered at oxipatite treated dentin. Oxipatite attained improved crystallographic atomic order and less structural variation in both distances and angles. Apical dentin treated with oxipatite attained preferred grain orientation with polycrystalline lattices. SIGNIFICANCE: The immature crystallites formed in dentin treated with calcypatite and oxipatite will account for high hydroxyapatite solubility and remineralizing activity. New polycrystalline formations encountered in apical dentin treated with oxipatite may also produce high mechanical performance.


Gutta-Percha , Root Canal Filling Materials , Apatites , Dental Pulp Cavity , Dentin , Epoxy Resins , Hydroxyapatites , Materials Testing , Surface Properties
14.
J Dent ; 88: 103162, 2019 09.
Article En | MEDLINE | ID: mdl-31283963

OBJECTIVES: To evaluate the effectiveness of different endodontic canal sealers for dentin permeability reduction and to determine the viscoelastic performance of root dentin after their application. METHODS: Cervical, medial and apical root dentin surfaces were treated with two experimental hydroxyapatite-based cements, containing sodium hydroxide (calcypatite) or zinc oxide (oxipatite); an epoxy resin- based canal sealer, AH Plus; and gutta-percha. Root dentin was evaluated for fluid filtration. Field emission scanning electron microscopy, energy dispersive analysis, AFM, Young's modulus and Nano-DMA analysis were also performed, at the inner and outer zones of dentin. RESULTS: Dentin treated with oxipatite showed the lowest microleakage among groups with hermetically sealed tubules and zinc-based salt formations. Samples treated with oxipatite showed the highest Ei at the cervical dentin third among groups, at 6 m of storage. Oxipatite promoted the highest complex modulus and tan delta values at the inner zone of both cervical and medial root dentin. Calcypatite favored the lowest tan delta outcomes at the inner zone of apical dentin at 6 m. CONCLUSIONS: Specimens treated with oxipatite showed the highest sealing ability, based on the highest Young's modulus and dentin mineralization, achieved by closing dentinal tubules, voids and pores that reinforced the inner zone of root dentin. The homogeneity of viscoelastic properties among the different root dentin thirds favored the energy dissipation without creating zones of stress concentration and micro-cracking which would have challenge micropermeability. Thereby, among the tested materials oxipatite is proposed as canal filling material and sealer in endodontics. CLINICAL SIGNIFICANCE: Oxipatite could be considered a good candidate for root canal filling material and sealer due to its improved long-term sealing ability and to the advanced remineralization, and so to the enhanced energy dissipation achieved at the inner zone of the radicular dentin.


Dentin , Gutta-Percha , Root Canal Filling Materials , Tooth Root , Tooth, Nonvital , Zinc Oxide , Apatites , Dental Pulp Cavity , Epoxy Resins , Humans , Hydroxyapatites , Materials Testing
15.
Med. oral patol. oral cir. bucal (Internet) ; 24(2): e156-e164, mar. 2019. tab, ilus, graf
Article En | IBECS | ID: ibc-180638

Background: The aim was to evaluate the effect of silver loaded nanoparticles (NPs) application on the triboscopic, crystallographic and viscoelastic properties of demineralized dentin. Polymethylmetacrylate-based NPs and Ag loaded NPs were applied on demineralized dentin. Material and Methods: Treated and untreated surfaces were probed by a nanoindenter to test viscoelasticity, and by atomic force microscopy to test nanoroughness and collagen fibril diameter. X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-field imaging were also used. Results: Dentin treated with Ag-NPs attained the lowest complex modulus, and the highest tan delta values after 7 days of storage. Dentin treated with undoped-NPs achieved the lowest nanoroughness and the greatest collagen bandwidths among groups. Crystals were identified as hydroxyapatite with the highest crystallographic maturity and crystallite size in dentin treated with undoped-NPs. Texture increased in all samples from 24 h to 7 d, except in dentin surfaces treated with Ag-NPs at 310 plane. Polyhedral, block-like, hexagonal or plate-like shaped apatite crystals constituted the bulk of minerals in dentin treated with Ag-NPs, after 7 d. Polyhedral or rounded/drop-like, and polymorphic in strata crystal apatite characterized the minerals when undoped-NPs were used, with more crystalline characteristics after 7 d than that found when Ag-NPs were applied. Ag-NPs application did not improve the mechanical performance of dentin and did not produce dentin remineralization. However, energy was dissipated through the dentin without showing stress concentration; contrary was occurring at dentin treated with undoped- NPs, that provoked bridge-like mineral deposits at the dentin surface. Conclusions: Ag-NPs application did not enhance the mechanical properties of cervical dentin, though the energy dissipation did not damage the dentin structure. Remineralization at dentin was not produced after Ag-NPs appli-cation, though improved crystallinity may lead to increase stability of the apatite that was generated at the dentin surface


No disponible


Humans , Dentin/physiopathology , Metal Nanoparticles/therapeutic use , Silver/therapeutic use , Tooth Demineralization/therapy , Tooth Remineralization/methods , Calcification, Physiologic/physiology
16.
Clin Oral Investig ; 23(3): 1197-1208, 2019 Mar.
Article En | MEDLINE | ID: mdl-29971511

OBJECTIVE: Nanogels designing for effective treatment of eroded cervical dentin lesions. MATERIALS AND METHODS: Polymethylmetacrylate-based nanoparticles (NPs) were doxycycline (D), calcium, or zinc loaded. They were applied on eroded cervical dentin. Treated surfaces were characterized morphologically by atomic force and scanning electron microscopy, mechanically probed by a nanoindenter to test nanohardness and Young's modulus, and chemically analyzed by Raman spectroscopy at 24 h and 7 days of storage. Data were submitted to ANOVA and Student-Newman-Keuls multiple comparisons tests. RESULTS: Dentin treated with Zn-NPs attained the highest nanomechanical properties, mineralization, and crystallinity among groups. Nanoroughness was lower in Zn-treated surfaces in comparison to dentin treated with undoped gels. Dentin treated with Ca-NPs created the minimal calcification at the surface and showed the lowest Young's modulus at peritubular dentin. Intertubular dentin appeared remineralized. Dentinal tubules were empty in samples treated with D-NPs, partially occluded in cervical dentin treated with undoped NPs and Ca-NPs, and mineral covered when specimens were treated with Zn-NPs. CONCLUSIONS: Zn-loaded NPs permit functional remineralization of eroded cervical dentin. Based on the tested nanomechanical and chemical properties, Zn-based nanogels are suitable for dentin remineralization. CLINICAL RELEVANCE: The ability of zinc-loaded nanogels to promote dentin mineralization may offer new strategies for regeneration of eroded cervical dentin and effective treatment of dentin hypersensitivity.


Dentin/chemistry , Nanogels , Polymers , Tooth Remineralization , Zinc/chemistry , Humans
17.
J Mech Behav Biomed Mater ; 91: 109-121, 2019 03.
Article En | MEDLINE | ID: mdl-30553207

The aim of this research was to ascertain the mechanical and chemical behavior of sound and caries-affected dentin (CAD), after the placement of Zn-free vs containing amalgam restorations. Peritubular and intertubular dentin were evaluated using, a) nanoindenter in scanning mode; the load and displacement responses were used to perform the nano-Dynamic mechanical analysis and to estimate the complex (E * ) and storage modulus (E'); b) Raman spectroscopy was used to describe the hierarchical cluster analysis (HCA). Assessments were performed before restoration placement and after restoring, and after 3 months of storage with thermocycling (100,000cy/5 °C and 55 °C). When CAD was treated with Zn-containing restorations, differences between E * and E' at both peritubular and intertubular dentin augmented, with energy concentration and production of implications in the mechanical performance of the restored teeth. E * and E' were very low at intratubular dentin of CAD restored with Zn-containing restorations. The relative presence of minerals, the phosphate crystallinity and the crosslinking of collagen increased their values at both types of dentin (peritubular and intertubular) when CAD was treated with Zn-containing restorations. The nature and secondary structure of collagen improved in CAD treated with Zn-containing amalgams. Different levels of dentin remineralization were revealed by hierarchical cluster analysis.


Dental Amalgam/chemistry , Dental Restoration Repair , Dentin/chemistry , Elasticity , Zinc/chemistry
18.
J Dent ; 79: 61-67, 2018 12.
Article En | MEDLINE | ID: mdl-30296553

OBJECTIVE: This study aimed to evaluate the effect of silver loaded nanoparticles (NPs) application on dentin remineralization. METHODS: Polymethylmetacrylate-based NPs and silver loaded NPs (Ag-NPs) were applied on demineralized dentin surfaces. Dentin was characterized morphologically by scanning electron microscopy, mechanically probed by a nanoindenter to test nanohardness and Young modulus, and chemically analyzed by Raman spectroscopy after 24 h and 7 d of storage. Untreated surfaces were used as control. Data were submitted to ANOVA and Student-Newman-Keuls multiple comparisons tests (P < 0.05). RESULTS: After Raman analysis, dentin treated with Ag-NPs obtained the lowest mineralization and intensity of stoichiometric hydroxyapatite when compared with specimens treated with undoped-NPs. The lowest relative mineral concentration, expressed as the ratio phosphate or carbonate/phenyl group, and crystallinity was attained by dentin treated with Ag-NPs, after 7 d. Ag-NPs application generated the highest values of collagen crosslinking (intensity at 1032 cm-1 band). The molecular conformation of the collagen's polypeptide chains, amide-I and CH2 also attained the highest peaks in dentin treated with Ag-NPs. Staggered and demineralized collagen fibrils were observed covering the dentin surfaces treated with Ag-NPs, at both 24 h and 7 d. Samples treated with Ag-NPs attained the lowest values of nanohardness and Young's modulus at 7 d of storage. CONCLUSIONS: Peritubular and intertubular dentin were remineralized when using undoped-NPs. After 7 d, collagen treated with NPs was remineralized but dentin treated with Ag-NPs attained an improved collagen matrix structure and stability but the lowest mineralization and crystallinity. CLINICAL SIGNIFICANCE: Preservation of the demineralized organic matrix is fundamental in operative dentistry. Silver contributed to improve crosslinking, nature and secondary structure of demineralized dentin collagen, for further long-term intrafibrillar mineralization.


Dentin , Nanoparticles , Silver , Collagen , Durapatite , Humans
19.
Injury ; 49 Suppl 2: S11-S21, 2018 Sep.
Article En | MEDLINE | ID: mdl-30077357

BACKGROUND: Improvements to the understating of the compositional contributions of bone mineral and organic components to the competence of trabecular bone are crucial. The purpose of this study was to propose a protocol to study biochemical composition of trabecular bone, based on two combined Raman analysis methodologies. MATERIAL AND METHODS: Both cluster and single point Raman mappings were obtained, in order to assess bone degeneration associated with aging, disease, or injury, and to help in the evaluation and development of successful therapies. In this study, human trabecular bone has been analysed throughout a) Raman cluster analysis: bone mineral content, carbonate-to-phosphate ratio (both from the mineral components), the crosslinking and nature/secondary structure of collagen (both from the organic components); and b) Single point Raman spectra, where Raman points related to the minerals and organic components were also obtained, both techniques were employed in spectra attained at 400 to 1700 cm-1. RESULTS: Multivariate analysis confirmed: 1) the different spectral composition, 2) the existence of centroids grouped by chemical affinity of the various components of the trabecular bone, and 3) the several traces of centroids and distribution of chemical compositional clusters. CONCLUSIONS: This study is important, because it delivers a study protocol that provides molecular variations information in both mineral and collagen structure of trabecular bone tissue. This will enable clinicians to benefit knowing the microstructural differences in the bone subjected to degeneration of their patients.


Bone Density/physiology , Cancellous Bone/diagnostic imaging , Collagen/metabolism , Femur Neck/diagnostic imaging , Spectrum Analysis, Raman , Biomechanical Phenomena , Cancellous Bone/pathology , Cancellous Bone/ultrastructure , Femur Neck/pathology , Femur Neck/ultrastructure , Humans , Nanostructures , Statistics, Nonparametric , Stress, Mechanical
20.
Am J Dent ; 31(3): 155-165, 2018 Jun.
Article En | MEDLINE | ID: mdl-30028935

PURPOSE: To evaluate if mechanical and thermal cycling promote remineralization at the resin-dentin interface after bonding with three different adhesive approaches. METHODS: Dentin surfaces were subjected to three different treatments: demineralization (1) by 37% phosphoric acid followed by application of an etch-and-rinse dentin adhesive Single Bond (Adper Single Bond) (SB); (2) by 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB; (3) application of a self-etch dentin adhesive: Clearfil-SEB (Clearfil SE Bond). Bonded interfaces were stored during 24 hours and then submitted for 3 months to: (1) storage at 37ºC, (2) load cycling, (3) thermocycling, and (4) thermo+load cycling. One section was extracted from each tooth, monthly. Resin-dentin interfaces were analyzed by AFM nano-indentation, Raman spectroscopy/cluster analysis and Masson's trichrome staining at 24 hours, 1, 2 and 3 months, to determine remineralization at the interface. RESULTS: Thermo+load cycling promoted the highest biomimetic remineralization at the hybrid layer formed with EDTA+SB and Clearfil-SEB, at the 1 month time point. A narrow mineral-depleted zone was observed after thermo+load cycling with EDTA+ SB, and at those specimens bonded with Clearfil-SEB. Thermo+load cycling remineralized the dentin interface treated with EDTA+SB and Clearfil-SEB, after 1 month of study period, providing bioactivity and maturity of formed minerals. CLINICAL SIGNIFICANCE: In vitro challenging (thermo+load cycling) favors dentin remineralization at the resin-dentin bonded interfaces promoted with mild conditioning acids.


Dental Bonding , Dental Cements , Tooth Remineralization , Dentin , Dentin-Bonding Agents , Edetic Acid , Materials Testing , Resin Cements , Tensile Strength
...