Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 622(7983): 562-573, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673118

RESUMEN

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Asunto(s)
Implantación del Embrión , Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Embrionarias Humanas , Humanos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Fertilización , Gastrulación , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Trofoblastos/citología , Saco Vitelino/citología , Saco Vitelino/embriología , Células Gigantes/citología
2.
Stem Cell Reports ; 17(11): 2484-2500, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36270280

RESUMEN

The recent derivation of human trophoblast stem cells (TSCs) from placental cytotrophoblasts and blastocysts opened opportunities for studying the development and function of the human placenta. Recent reports have suggested that human naïve, but not primed, pluripotent stem cells (PSCs) retain an exclusive potential to generate TSCs. Here we report that, in the absence of WNT stimulation, transforming growth factor ß (TGF-ß) pathway inhibition leads to direct and robust conversion of primed human PSCs into TSCs. The resulting primed PSC-derived TSC lines exhibit self-renewal, can differentiate into the main trophoblast lineages, and present RNA and epigenetic profiles that are indistinguishable from recently established TSC lines derived from human placenta, blastocysts, or isogenic human naïve PSCs expanded under human enhanced naïve stem cell medium (HENSM) conditions. Activation of nuclear Yes-associated protein (YAP) signaling is sufficient for this conversion and necessary for human TSC maintenance. Our findings underscore a residual plasticity in primed human PSCs that allows their in vitro conversion into extra-embryonic trophoblast lineages.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Femenino , Humanos , Embarazo , Blastocisto , Diferenciación Celular , Placenta , Células Madre Pluripotentes/metabolismo
3.
Curr Opin Genet Dev ; 77: 101988, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36179582

RESUMEN

Research on early postimplantation mammalian development has been limited by the small size and intrauterine confinement of the developing embryos. Owing to the inability to observe and manipulate living embryos at these stages in utero, the establishment of robust ex utero embryo-culture systems that capture prolonged periods of mouse development has been an important research goal. In the last few years, these methods have been significantly improved by the optimization and enhancement of in vitro culture systems sustaining embryo development during peri-implantation stages for several species, and more recently, proper growth of natural mouse embryos from pregastrulation to late organogenesis stages and of embryonic stem cell (ES)-derived synthetic embryo models until early organogenesis stages. Here, we discuss the most recent ex utero embryo-culture systems established to date for rodents, nonhuman primates, and humans. We emphasize their technical aspects and developmental timeframe and provide insights into the new opportunities that these methods will contribute to the study of natural and synthetic mammalian embryogenesis and the stem-cell field.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Humanos , Ratones , Animales , Desarrollo Embrionario/genética , Implantación del Embrión , Organogénesis , Roedores
4.
Nature ; 610(7930): 143-153, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007540

RESUMEN

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro1-5, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells6-11. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Modelos Biológicos , Neurulación , Organogénesis , Animales , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Madre Embrionarias/citología , Endodermo/citología , Endodermo/embriología , Corazón/embriología , Mesencéfalo/embriología , Ratones , Tubo Neural/embriología , Factor de Transcripción PAX6/deficiencia , Factor de Transcripción PAX6/genética , Prosencéfalo/embriología , Somitos/embriología
5.
Cell ; 185(18): 3290-3306.e25, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988542

RESUMEN

In vitro cultured stem cells with distinct developmental capacities can contribute to embryonic or extraembryonic tissues after microinjection into pre-implantation mammalian embryos. However, whether cultured stem cells can independently give rise to entire gastrulating embryo-like structures with embryonic and extraembryonic compartments remains unknown. Here, we adapt a recently established platform for prolonged ex utero growth of natural embryos to generate mouse post-gastrulation synthetic whole embryo models (sEmbryos), with both embryonic and extraembryonic compartments, starting solely from naive ESCs. This was achieved by co-aggregating non-transduced ESCs, with naive ESCs transiently expressing Cdx2 or Gata4 to promote their priming toward trophectoderm and primitive endoderm lineages, respectively. sEmbryos adequately accomplish gastrulation, advance through key developmental milestones, and develop organ progenitors within complex extraembryonic compartments similar to E8.5 stage mouse embryos. Our findings highlight the plastic potential of naive pluripotent cells to self-organize and functionally reconstitute and model the entire mammalian embryo beyond gastrulation.


Asunto(s)
Células Madre Embrionarias , Gastrulación , Animales , Diferenciación Celular/fisiología , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Endodermo , Mamíferos , Ratones
6.
Mol Cell ; 82(1): 106-122.e9, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34875212

RESUMEN

The fidelity of the early embryonic program is underlined by tight regulation of the chromatin. Yet, how the chromatin is organized to prohibit the reversal of the developmental program remains unclear. Specifically, the totipotency-to-pluripotency transition marks one of the most dramatic events to the chromatin, and yet, the nature of histone alterations underlying this process is incompletely characterized. Here, we show that linker histone H1 is post-translationally modulated by SUMO2/3, which facilitates its fixation onto ultra-condensed heterochromatin in embryonic stem cells (ESCs). Upon SUMOylation depletion, the chromatin becomes de-compacted and H1 is evicted, leading to totipotency reactivation. Furthermore, we show that H1 and SUMO2/3 jointly mediate the repression of totipotent elements. Lastly, we demonstrate that preventing SUMOylation on H1 abrogates its ability to repress the totipotency program in ESCs. Collectively, our findings unravel a critical role for SUMOylation of H1 in facilitating chromatin repression and desolation of the totipotent identity.


Asunto(s)
Blastocisto/metabolismo , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Blastocisto/citología , Cromatina/genética , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Histonas/genética , Humanos , Ratones , Fenotipo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitinas/genética , Ubiquitinas/metabolismo
7.
J Vis Exp ; (176)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34747408

RESUMEN

Postimplantation mammalian embryo culture methods have been generally inefficient and limited to brief periods after dissection out of the uterus. Platforms have been recently developed for highly robust and prolonged ex utero culture of mouse embryos from egg-cylinder stages until advanced organogenesis. These platforms enable appropriate and faithful development of pregastrulating embryos (E5.5) until the hind limb formation stage (E11). Late gastrulating embryos (E7.5) are grown in rotating bottles in these settings, while extended culture from pregastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle cultures. In addition, sensitive regulation of O2 and CO2 concentration, gas pressure, glucose levels, and the use of a specific ex utero culture medium are critical for proper embryo development. Here, a detailed step-by-step protocol for extended ex utero mouse embryo culture is provided. The ability to grow normal mouse embryos ex utero from gastrulation to organogenesis represents a valuable tool for characterizing the effect of different experimental perturbations during embryonic development.


Asunto(s)
Técnicas de Cultivo de Embriones , Organogénesis , Animales , Técnicas de Cultivo de Embriones/métodos , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Femenino , Gastrulación , Mamíferos , Ratones , Embarazo
8.
Cell Stem Cell ; 28(9): 1549-1565.e12, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33915080

RESUMEN

Isolating human MEK/ERK signaling-independent pluripotent stem cells (PSCs) with naive pluripotency characteristics while maintaining differentiation competence and (epi)genetic integrity remains challenging. Here, we engineer reporter systems that allow the screening for defined conditions that induce molecular and functional features of human naive pluripotency. Synergistic inhibition of WNT/ß-CATENIN, protein kinase C (PKC), and SRC signaling consolidates the induction of teratoma-competent naive human PSCs, with the capacity to differentiate into trophoblast stem cells (TSCs) and extraembryonic naive endodermal (nEND) cells in vitro. Divergent signaling and transcriptional requirements for boosting naive pluripotency were found between mouse and human. P53 depletion in naive hPSCs increased their contribution to mouse-human cross-species chimeric embryos upon priming and differentiation. Finally, MEK/ERK inhibition can be substituted with the inhibition of NOTCH/RBPj, which induces alternative naive-like hPSCs with a diminished risk for deleterious global DNA hypomethylation. Our findings set a framework for defining the signaling foundations of human naive pluripotency.


Asunto(s)
Células Madre Pluripotentes , Animales , Diferenciación Celular , Embrión de Mamíferos , Humanos , Ratones , Transducción de Señal , Trofoblastos
9.
Nature ; 593(7857): 119-124, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33731940

RESUMEN

The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro1,2, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.


Asunto(s)
Técnicas de Cultivo de Embriones , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Técnicas In Vitro , Organogénesis , Animales , Técnicas de Cultivo de Embriones/métodos , Embrión de Mamíferos/citología , Femenino , Gastrulación , Masculino , Ratones , Factores de Tiempo , Útero
10.
Genes Dev ; 34(19-20): 1373-1391, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32943573

RESUMEN

The N6-methyladenosine (m6A) modification is the most prevalent post-transcriptional mRNA modification, regulating mRNA decay and splicing. It plays a major role during normal development, differentiation, and disease progression. The modification is regulated by a set of writer, eraser, and reader proteins. The YTH domain family of proteins consists of three homologous m6A-binding proteins, Ythdf1, Ythdf2, and Ythdf3, which were suggested to have different cellular functions. However, their sequence similarity and their tendency to bind the same targets suggest that they may have overlapping roles. We systematically knocked out (KO) the Mettl3 writer, each of the Ythdf readers, and the three readers together (triple-KO). We then estimated the effect in vivo in mouse gametogenesis, postnatal viability, and in vitro in mouse embryonic stem cells (mESCs). In gametogenesis, Mettl3-KO severity is increased as the deletion occurs earlier in the process, and Ythdf2 has a dominant role that cannot be compensated by Ythdf1 or Ythdf3, due to differences in readers' expression pattern across different cell types, both in quantity and in spatial location. Knocking out the three readers together and systematically testing viable offspring genotypes revealed a redundancy in the readers' role during early development that is Ythdf1/2/3 gene dosage-dependent. Finally, in mESCs there is compensation between the three Ythdf reader proteins, since the resistance to differentiate and the significant effect on mRNA decay occur only in the triple-KO cells and not in the single KOs. Thus, we suggest a new model for the Ythdf readers function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.


Asunto(s)
Compensación de Dosificación (Genética) , Gametogénesis/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular , Células Madre Embrionarias , Fertilidad/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados
11.
Stem Cells Int ; 2019: 7627148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31065279

RESUMEN

Human mesenchymal stem cells (MSCs) are good candidates for brain cell replacement strategies and have already been used as adjuvant treatments in neurological disorders. MSCs can be obtained from many different sources, and the present study compares the potential of neuronal transdifferentiation in MSCs from adult and neonatal sources (Wharton's jelly (WhJ), dental pulp (DP), periodontal ligament (PDL), gingival tissue (GT), dermis (SK), placenta (PLAC), and umbilical cord blood (UCB)) with a protocol previously tested in bone marrow- (BM-) MSCs consisting of a cocktail of six small molecules: I-BET151, CHIR99021, forskolin, RepSox, Y-27632, and dbcAMP (ICFRYA). Neuronal morphology and the presence of cells positive for neuronal markers (TUJ1 and MAP2) were considered attributes of neuronal induction. The ICFRYA cocktail did not induce neuronal features in WhJ-MSCs, and these features were only partial in the MSCs from dental tissues, SK-MSCs, and PLAC-MSCs. The best response was found in UCB-MSCs, which was comparable to the response of BM-MSCs. The addition of neurotrophic factors to the ICFRYA cocktail significantly increased the number of cells with complex neuron-like morphology and increased the number of cells positive for mature neuronal markers in BM- and UCB-MSCs. The neuronal cells generated from UCB-MSCs and BM-MSCs showed increased reactivity of the neuronal genes TUJ1, MAP2, NF-H, NCAM, ND1, TAU, ENO2, GABA, and NeuN as well as down- and upregulation of MSC and neuronal genes, respectively. The present study showed marked differences between the MSCs from different sources in response to the transdifferentiation protocol used here. These results may contribute to identifying the best source of MSCs for potential cell replacement therapies.

12.
Cell Stem Cell ; 24(2): 328-341.e9, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554962

RESUMEN

The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.


Asunto(s)
Reprogramación Celular/genética , Epigénesis Genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética , Animales , Linaje de la Célula/genética , Cromatina/metabolismo , Desmetilación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Unión Proteica , ARN de Transferencia/metabolismo , Factores de Transcripción/metabolismo
13.
Cell Stem Cell ; 23(3): 412-425.e10, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30122475

RESUMEN

Mbd3, a member of nucleosome remodeling and deacetylase (NuRD) co-repressor complex, was previously identified as an inhibitor for deterministic induced pluripotent stem cell (iPSC) reprogramming, where up to 100% of donor cells successfully complete the process. NuRD can assume multiple mutually exclusive conformations, and it remains unclear whether this deterministic phenotype can be attributed to a specific Mbd3/NuRD subcomplex. Moreover, since complete ablation of Mbd3 blocks somatic cell proliferation, we aimed to explore functionally relevant alternative ways to neutralize Mbd3-dependent NuRD activity. We identify Gatad2a, a NuRD-specific subunit, whose complete deletion specifically disrupts Mbd3/NuRD repressive activity on the pluripotency circuitry during iPSC differentiation and reprogramming without ablating somatic cell proliferation. Inhibition of Gatad2a facilitates deterministic murine iPSC reprogramming within 8 days. We validate a distinct molecular axis, Gatad2a-Chd4-Mbd3, within Mbd3/NuRD as being critical for blocking reestablishment of naive pluripotency and further highlight signaling-dependent and post-translational modifications of Mbd3/NuRD that influence its interactions and assembly.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción GATA/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Femenino , Células Madre Pluripotentes Inducidas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos
14.
Neurochem Res ; 42(2): 415-427, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27804011

RESUMEN

Neural progenitors (NP), found in fetal and adult brain, differentiate into neurons potentially able to be used in cell replacement therapies. This approach however, raises technical and ethical problems which limit their potential therapeutic use. Alternately, NPs can be obtained by transdifferentiation of non-neural somatic cells evading these difficulties. Human bone marrow mesenchymal stromal cells (MSCs) are suggested to transdifferentiate into NP-like cells, which however, have a low proliferation capacity. The present study demonstrates the requisite of cell adhesion for proliferation and survival of NP-like cells and re-evaluates some neuronal features after differentiation by standard procedures. Mature neuronal markers, though, were not detected by these procedures. A chemical differentiation approach was used in this study to convert MSCs-derived NP-like cells into neurons by using a cocktail of six molecules, CHIR99021, I-BET151, RepSox, DbcAMP, forskolin and Y-27632, defined after screening combinations of 22 small molecules. Direct transdifferentiation of MSCs into neuronal cells was obtained with the small molecule cocktail, without requiring the NP-like intermediate stage.


Asunto(s)
Proliferación Celular/fisiología , Transdiferenciación Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Células-Madre Neurales/fisiología , Neuronas/fisiología , Adolescente , Adulto , Amidas/administración & dosificación , Proliferación Celular/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Colforsina/administración & dosificación , Combinación de Medicamentos , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neuronas/efectos de los fármacos , Piridinas/administración & dosificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...