Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Ann Rheum Dis ; 81(1): 56-67, 2022 01.
Article En | MEDLINE | ID: mdl-34625402

OBJECTIVES: To characterise splicing machinery (SM) alterations in leucocytes of patients with rheumatoid arthritis (RA), and to assess its influence on their clinical profile and therapeutic response. METHODS: Leucocyte subtypes from 129 patients with RA and 29 healthy donors (HD) were purified, and 45 selected SM elements (SME) were evaluated by quantitative PCR-array based on microfluidic technology (Fluidigm). Modulation by anti-tumour necrosis factor (TNF) therapy and underlying regulatory mechanisms were assessed. RESULTS: An altered expression of several SME was found in RA leucocytes. Eight elements (SNRNP70, SNRNP200, U2AF2, RNU4ATAC, RBM3, RBM17, KHDRBS1 and SRSF10) were equally altered in all leucocytes subtypes. Logistic regressions revealed that this signature might: discriminate RA and HD, and anti-citrullinated protein antibodies (ACPAs) positivity; classify high-disease activity (disease activity score-28 (DAS28) >5.1); recognise radiological involvement; and identify patients showing atheroma plaques. Furthermore, this signature was altered in RA synovial fluid and ankle joints of K/BxN-arthritic mice. An available RNA-seq data set enabled to validate data and identified distinctive splicing events and splicing variants among patients with RA expressing high and low SME levels. 3 and 6 months anti-TNF therapy reversed their expression in parallel to the reduction of the inflammatory profile. In vitro, ACPAs modulated SME, at least partially, by Fc Receptor (FcR)-dependent mechanisms. Key inflammatory cytokines further altered SME. Lastly, induced SNRNP70-overexpression and KHDRBS1-overexpression reversed inflammation in lymphocytes, NETosis in neutrophils and adhesion in RA monocytes and influenced activity of RA synovial fibroblasts. CONCLUSIONS: Overall, we have characterised for the first time a signature comprising eight dysregulated SME in RA leucocytes from both peripheral blood and synovial fluid, linked to disease pathophysiology, modulated by ACPAs and reversed by anti-TNF therapy.


Alternative Splicing , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/genetics , RNA/blood , Spliceosomes , Adaptor Proteins, Signal Transducing/genetics , Adult , Alternative Splicing/drug effects , Animals , Anti-Citrullinated Protein Antibodies/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Case-Control Studies , Cell Cycle Proteins/genetics , Cells, Cultured , Citrullination , Cytokines/pharmacology , DNA-Binding Proteins/genetics , Female , Gene Expression/drug effects , Humans , Lymphocytes , Male , Mice , Middle Aged , Monocytes , Neutrophils , RNA/metabolism , RNA Splicing Factors/genetics , RNA, Small Nuclear/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/genetics , Sequence Analysis, RNA , Serine-Arginine Splicing Factors/genetics , Splicing Factor U2AF/genetics , Synovial Fluid/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors
2.
Antioxidants (Basel) ; 10(4)2021 Apr 13.
Article En | MEDLINE | ID: mdl-33924642

Coenzyme Q10 (CoQ10) is a mitochondrial electron carrier and a powerful lipophilic antioxidant located in membranes and plasma lipoproteins. CoQ10 is endogenously synthesized and obtained from the diet, which has raised interest in its therapeutic potential against pathologies related to mitochondrial dysfunction and enhanced oxidative stress. Novel formulations of solubilized CoQ10 and the stabilization of reduced CoQ10 (ubiquinol) have improved its bioavailability and efficacy. Synthetic analogues with increased solubility, such as idebenone, or accumulated selectively in mitochondria, such as MitoQ, have also demonstrated promising properties. CoQ10 has shown beneficial effects in autoimmune diseases. Leukocytes from antiphospholipid syndrome (APS) patients exhibit an oxidative perturbation closely related to the prothrombotic status. In vivo ubiquinol supplementation in APS modulated the overexpression of inflammatory and thrombotic risk-markers. Mitochondrial abnormalities also contribute to immune dysregulation and organ damage in systemic lupus erythematosus (SLE). Idebenone and MitoQ improved clinical and immunological features of lupus-like disease in mice. Clinical trials and experimental models have further demonstrated a therapeutic role for CoQ10 in Rheumatoid Arthritis, multiple sclerosis and type 1 diabetes. This review summarizes the effects of CoQ10 and its analogs in modulating processes involved in autoimmune disorders, highlighting the potential of these therapeutic approaches for patients with immune-mediated diseases.

3.
Front Immunol ; 10: 764, 2019.
Article En | MEDLINE | ID: mdl-31040845

Antiphospholipid Syndrome (APS) is an autoimmune disorder, characterized by pregnancy morbidity and/or a hyper coagulable state involving the venous or the arterial vasculature and associated with antiphospholipid antibodies (aPL), including anti-cardiolipin antibodies (aCL), anti-beta2-glycoprotein I (anti-ß2GPI), and Lupus anticoagulant (LA). In recent years there have been many advances in the understanding of the molecular basis of vascular involvement in APS. APS is of multifactorial origin and develops in genetically predisposed individuals. The susceptibility is determined by major histocompatibility complex (MHC). Different HLA-DR and HLA-DQ alleles have been reported in association with APS. Moreover, MHC II alleles may determine the autoantibody profile and, as such, the clinical phenotype of this disease. Besides, polymorphisms in genes related to the vascular system are considered relevant factors predisposing to clinical manifestations. Antiphospholipid antibodies (aPL) induce genomic and epigenetic alterations that support a pro- thrombotic state. Thus, a specific gene profile has been identified in monocytes from APS patients -related to aPL titres in vivo and promoted in vitro by aPL- explaining their cardiovascular involvement. Regarding epigenetic approaches, we previously recognized two miRNAs (miR-19b/miR-20a) as potential modulators of tissue factor, the main receptor involved in thrombosis development in APS. aPLs can further promote changes in the expression of miRNA biogenesis proteins in leukocytes of APS patients, which are translated into an altered miRNA profile and, consequently, in the altered expression of their protein targets related to thrombosis and atherosclerosis. MicroRNAs are further released into the circulation, acting as intercellular communicators. Accordingly, a specific signature of circulating miRNAs has been recently identified in APS patients as potential biomarkers of clinical features. Genomics and epigenetic biomarkers might also serve as indices for disease progression, clinical pharmacology, or safety, so that they might be used to individually predict disease outcome and guide therapeutic decisions. In that way, in the setting of a clinical trial, novel and specific microRNA-mRNA regulatory networks in APS, modified by effect of Ubiquinol treatment, have been identified. In this review, current and previous studies analyzing genomic/epigenetic changes related to the clinical profile of APS patients, and their modulation by effect of specific therapies, are discussed.


Antiphospholipid Syndrome/genetics , Antiphospholipid Syndrome/immunology , Atherosclerosis/genetics , Atherosclerosis/immunology , Thrombosis/genetics , Thrombosis/immunology , Antibodies, Antiphospholipid/immunology , Antiphospholipid Syndrome/complications , Atherosclerosis/etiology , Biomarkers/blood , DNA Methylation , Epigenesis, Genetic , Extracellular Traps/immunology , Gene Expression Profiling , Genetic Markers , Genetic Predisposition to Disease , Genomics , Humans , MicroRNAs/blood , MicroRNAs/genetics , Oxidative Stress , Thrombosis/etiology
...