Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
RSC Adv ; 14(27): 19029-19040, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38873539

The assembly of MoVIO2 2+ and methoxy-substituted salicylaldehyde nicotinoyl hydrazone ligands afforded two classes of hybrid polyoxometalates (POMs). In the Class I architectures, [MoO2(HL1-3)(D)]2[Mo6O19]·xCH3COCH3 (D = CH3COCH3 or H2O, x = 0 or 2, and L1-3 = ligands bearing the OMe group at position 3, 4 and 5, respectively), the main driving force for self-assembly is the electrostatic interaction between the components. Class II architectures are composed of a POM anion covalently linked to two Mo-complex units through the terminal Ot or bridging µ2-OPOM oxygen atoms, as found in Lindqvist-based hybrids [{MoO2(HL1-3)}2Mo6O19]·xCH3CN (x = 0 or 2) and the asymmetrical ß-octamolybdate-based hybrid [{Mo2O4(HL2)(H2L)}{MoO2(HL2)}2Mo8O26]·CH3CN·H2O. Quantum chemical calculations were applied to evaluate the impact of the POM hybrid constituents on the hybrid-type stability, showing that it strongly depends on the ligand substituent position and ancillary ligand nature. Hybrids were tested as catalysts for cyclooctene epoxidation using tert-butyl hydroperoxide (TBHP in water or decane) and with or without the addition of acetonitrile (CH3CN) as an organic solvent. The catalytic results provided by the use of TBHP in decane are the best ones and classify all the prepared catalysts as very active, with the conversion of cyclooctene >90%, and high selectivity towards epoxide, >80%. We also examined the influence of the ligand structure, POM's hybrid type, and coordination mode on the Mo-hybrid activity and selectivity.

2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732078

This study aimed to synthesize molybdenum complexes coordinated with an aroyl hydrazone-type ligand (H2L), which was generated through the condensation of 2-hydroxy-5-nitrobenzaldehyde with benzhydrazide. The synthesis yielded two types of mononuclear complexes, specifically [MoO2(L)(MeOH)] and [MoO2(L)(H2O)], as well as a bipyridine-bridged dinuclear complex, [(MoO2(L))2(4,4'-bpy)]. Those entities were thoroughly characterized using a suite of analytical techniques, including attenuated total reflectance infrared spectroscopy (IR-ATR), elemental analysis (EA), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction (SCXRD). Additionally, solid-state impedance spectroscopy (SS-IS) was employed to investigate the electrical properties of these complexes. The mononuclear complexes were tested as catalysts in the epoxidation of cyclooctene and the oxidation of linalool. Among these, the water-coordinated mononuclear complex, [MoO2(L)(H2O)], demonstrated superior electrical and catalytic properties. A novel contribution of this research lies in establishing a correlation between the electrical properties, structural features, and the catalytic efficiency of the complexes, marking this work as one of the pioneering studies in this area for molybdenum coordination complexes, to the best of our knowledge.


Benzaldehydes , Coordination Complexes , Molybdenum , Oxidation-Reduction , Molybdenum/chemistry , Catalysis , Coordination Complexes/chemistry , Benzaldehydes/chemistry , Semiconductors
3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article En | MEDLINE | ID: mdl-38338782

A series of polynuclear, dinuclear, and mononuclear Mo(VI) complexes were synthesized with the hydrazonato ligands derived from 5-methoxysalicylaldehyde and the corresponding hydrazides (isonicotinic hydrazide (H2L1), nicotinic hydrazide (H2L2), 2-aminobenzhydrazide (H2L3), or 4-aminobenzhydrazide (H2L4)). The metallosupramolecular compounds obtained from non-coordinating solvents, [MoO2(L1,2)]n (1 and 2) and [MoO2(L3,4)]2 (3 and 4), formed infinite structures and metallacycles, respectively. By blocking two coordination sites with cis-dioxo ligands, the molybdenum centers have three coordination sites occupied by the ONO donor atoms from the rigid hydrazone ligands and one by the N atom of pyridyl or amine-functionalized ligand subcomponents from the neighboring Mo building units. The reaction in methanol afforded the mononuclear analogs [MoO2(L1-4)(MeOH)] (1a-4a) with additional monodentate MeOH ligands. All isolated complexes were tested as catalysts for cyclooctene epoxidation using tert-butyl hydroperoxide (TBHP) as an oxidant in water. The impact of the structure and ligand lability on the catalytic efficiency in homogeneous cyclooctene epoxidation was elucidated based on theoretical considerations. Thus, dinuclear assemblies exhibited better catalytic activity than mononuclear or polynuclear complexes.


Hydrazones , Water , Ligands , Catalysis , Cyclooctanes
4.
Molecules ; 27(18)2022 Sep 15.
Article En | MEDLINE | ID: mdl-36144747

This article gives an overview of the research activity of the LAC2 team at LCC developed at Castres in the field of sustainable chemistry with an emphasis on the collaboration with a research team from the University of Zagreb, Faculty of Science, Croatia. The work is situated within the context of sustainable chemistry for the development of catalytic processes. Those processes imply molecular complexes containing oxido-molybdenum, -vanadium, -tungsten or simple polyoxometalates (POMs) as catalysts for organic solvent-free epoxidation. The studies considered first the influence of the nature of complexes (and related ligands) on the reactivity (assessing mechanisms through DFT calculations) with model substrates. From those model processes, the work has been enlarged to the valorization of biomass resources. A part concerns the activity on vanadium chemistry and the final part concerns the use of POMs as catalysts, from molecular to grafted catalysts, (ep)oxidizing substrates from fossil and biomass resources.


Tungsten , Vanadium , Catalysis , Molybdenum/chemistry , Oxidation-Reduction , Tungsten/chemistry , Vanadium/chemistry
5.
Materials (Basel) ; 15(5)2022 Feb 25.
Article En | MEDLINE | ID: mdl-35268950

As chemists, we are still fascinated by the magic of nature [...].

6.
Molecules ; 26(18)2021 Sep 07.
Article En | MEDLINE | ID: mdl-34576906

Mn and Fe BPMEN complexes showed excellent reactivity in catalytic oxidation with an excess of co-reagent (CH3COOH). In the straight line of a cleaner catalytic system, volatile acetic acid was replaced by SiO2 (nano)particles with two different sizes to which pending carboxylic functions were added (SiO2@COOH). The SiO2@COOH beads were obtained by the functionalization of SiO2 with pending nitrile functions (SiO2@CN) followed by CN hydrolysis. All complexes and silica beads were characterized by NMR, infrared, DLS, TEM, X-ray diffraction. The replacement of CH3COOH by SiO2@COOH (100 times less on molar ratio) has been evaluated for (ep)oxidation on several substrates (cyclooctene, cyclohexene, cyclohexanol) and discussed in terms of activity and green metrics.

7.
Molecules ; 25(5)2020 Mar 05.
Article En | MEDLINE | ID: mdl-32150924

Epoxidation of the C=C double bond in unsaturated norlignans derived from hydroxymatairesinol was studied. The intermediate epoxides were formed in up to quantitative conversions and were readily further transformed into tetrahydrofuran, aryltetralin, and butyrolactone products-in diastereomeric mixtures-through ring-closing reactions and intramolecular couplings. For epoxidation, the classical Prilezhaev reaction, using stoichiometric amounts of meta-chloroperbenzoic acid (mCPBA), was used. As an alternative method, a catalytic system using dimeric molybdenum-complexes [MoO2L]2 with ONO- or ONS-tridentate Schiff base ligands and aqueous tert-butyl hydroperoxide (TBHP) as oxidant was used on the same substrates. Although the epoxidation was quantitative when using the Mo-catalysts, the higher temperatures led to more side-products and lower yields. Kinetic studies were also performed on the Mo-catalyzed reactions.


4-Butyrolactone/chemistry , Epoxy Compounds/chemistry , Lignans/chemistry , Catalysis , Kinetics , Molecular Structure
8.
Materials (Basel) ; 12(20)2019 Oct 09.
Article En | MEDLINE | ID: mdl-31600903

Catalyzed organic solvent-free (ep)oxidation were achieved using H3PM12O40 (M = Mo or W) complexes ionically grafted on APTES-functionalized nano-silica beads obtained from straightforward method (APTES = aminopropyltriethoxysilane). Those catalysts have been extensively analyzed through morphological studies (Dynamic Light Scattering (DLS), TEM) and several spectroscopic qualitative (IR, multinuclear solid-state NMR) and quantitative (1H and 31P solution NMR) methods. Interesting catalytic results were obtained for the epoxidation of cyclooctene, cyclohexene, limonene and oxidation of cyclohexanol with a lower [POM]/olefin ratio. The catalysts were found to be recyclable and reused during three runs with similar catalytic performances.

9.
Dalton Trans ; 48(27): 9974-9983, 2019 Jul 21.
Article En | MEDLINE | ID: mdl-31134996

Ageing a mixture of sodium molybdate, malonic acid, and tris(ethylenediamine)cobalt(iii) chloride using different synthetic routes, namely, solution-based methods at room temperature or 110 °C, and a mechanochemically accelerated vapour-assisted method, yielded the polyoxomolybdate [Co(en)3]5Na[Mo7O24(µ-Mo8O26)Mo7O24]·nH2O (1). The new polyoxomolybdate anion 1 comprised three fragments, namely, two {Mo7O24} units bridged by a {Mo8O26} unit, which were interconnected by the terminal oxygen atoms of MoO6 octahedra and represent a unique structural motif not yet described in the structurally versatile chemistry of polyoxomolybdates (POMos). The ageing reaction was found to occur via a series of intermediates, two of which were isolated and identified as the heptamolybdate coordination polymer [Co(en)3]2[NaMo7O24]Cl·nH2O (2), comprising {Mo7O24} units bridged by a sodium atom, and the heptamolybdate (H3O)[Co(en)3]2[Mo7O24]Cl·9H2O (3). An identical reaction procedure with [Co(C2O4)(en)2]+ instead of [Co(en)3]3+ yielded the orthomolybdate [Co(C2O4)(en)2]2[MoO4]·9H2O (4) and the hydrogen malonate [Co(C2O4)(en)2]C3O4H3 (5). The new polyoxomolybdate [Co(en)3]5Na[Mo7O24(µ-Mo8O26)Mo7O24]·nH2O was also examined as a catalyst for the epoxidation of cyclooctene, and was superior to both heptamolybdate and octamolybdate catalysts over 24 h. The heptamolybdate [Co(NH3)6]2[Mo7O24]·8H2O (6) was isolated as the only reaction product of sodium molybdate and hexaamminecobalt(iii) nitrate in the presence of malonic acid using solution-based methods.

10.
Molecules ; 24(4)2019 Feb 21.
Article En | MEDLINE | ID: mdl-30795615

Adipic acid (AA) was obtained by catalyzed oxidation of cyclohexene, epoxycyclohexane, or cyclohexanediol under organic solvent-free conditions using aqueous hydrogen peroxide (30%) as an oxidizing agent and molybdenum- or tungsten-based Keggin polyoxometalates (POMs) surrounded by organic cations or ionically supported on functionalized Merrifield resins. Operating under these environmentally friendly, greener conditions and with low catalyst loading (0.025% for the molecular salts and 0.001⁻0.007% for the supported POMs), AA could be produced in interesting yields.


Adipates/chemical synthesis , Cyclohexenes/chemistry , Epoxy Compounds/chemistry , Green Chemistry Technology , Hydrogen Peroxide/chemistry , Polystyrenes/chemistry , Catalysis , Humans , Molybdenum/chemistry , Oxidation-Reduction , Tungsten Compounds/chemistry
11.
Inorg Chem ; 51(10): 5931-40, 2012 May 21.
Article En | MEDLINE | ID: mdl-22540144

The reaction between the oxometallic complexes Cp*(2)M(2)O(5) and Na(2)M'O(4) (M, M' = Mo, W) in a 1:10 molar ratio in an acidic aqueous medium constitutes a mild and selective entry into the anionic Lindqvist-type hexametallic organometallic mixed oxides [Cp*Mo(x)W(6-x)O(18)](-) [x = 6 (1), 5 (2), 1 (3), 0 (4)]. All of these compounds have been isolated as salts of nBu(4)N(+) (a), nBu(4)P(+) (b), and Ph(4)P(+) (c) cations and two of them (1 and 3) also with the n-butylpyridinium (nBuPyr(+), d) cation. The compounds have been characterized by elemental analyses, thermogravimetric analyses, electrospray mass spectrometry, and IR spectroscopy. The molecular identity and geometry of compounds 1c, 2a, and 2c have been confirmed by single-crystal X-ray diffraction. Density functional theory calculations on models obtained by replacing Cp* with Cp (I-IV) have provided information on the assignment of the terminal M═O and bridging M-O-M vibrations.

12.
Acta Crystallogr C ; 64(Pt 2): m101-4, 2008 Feb.
Article En | MEDLINE | ID: mdl-18252989

A second polymorphic form (form I) of the previously reported compound {2-[(2-hydroxyethyl)iminiomethyl]phenolato-kappaO}dioxido{2-[(2-oxidoethyl)iminomethyl]phenolato-kappa(3)O,N,O'}molybdenum(VI) (form II), [Mo(C(9)H(9)NO(2))O(2)(C(9)H(11)NO(2))], is presented. The title structure differs from the previously reported polymorph [Glowiak, Jerzykiewicz, Sobczak & Ziólkowski (2003). Inorg. Chim. Acta, 356, 387-392] by the fact that the asymmetric unit contains three molecules linked by O-H...O hydrogen bonds. These trimeric units are further linked through O-H...O hydrogen bonds to form a chain parallel to the [111] direction. As in the previous polymorph, each molecule is built up from an MoO(2)(2+) cation surrounded by an O,N,O'-tridentate ligand (O(-)C(6)H(4)CH=NCH(2)CH(2)O(-)) and weakly coordinated by a second zwitterionic ligand (O(-)C(6)H(4)CH=N(+)HC(2)H(4)OH). All complexes are chiral with the absolute configuration at Mo being C or A. The main difference between the two polymorphs results from the alternation of the chirality at Mo within the chain.

...